1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: instances.ml,v 1.9.2.1 2004/07/16 19:30:10 herbelin Exp $ i*)
open Formula
open Sequent
open Unify
open Rules
open Util
open Term
open Rawterm
open Tacmach
open Tactics
open Tacticals
open Termops
open Reductionops
open Declarations
open Formula
open Sequent
open Names
open Libnames
let compare_instance inst1 inst2=
match inst1,inst2 with
Phantom(d1),Phantom(d2)->
(OrderedConstr.compare d1 d2)
| Real((m1,c1),n1),Real((m2,c2),n2)->
((-) =? (-) ==? OrderedConstr.compare) m2 m1 n1 n2 c1 c2
| Phantom(_),Real((m,_),_)-> if m=0 then -1 else 1
| Real((m,_),_),Phantom(_)-> if m=0 then 1 else -1
let compare_gr id1 id2=
if id1==id2 then 0 else
if id1==dummy_id then 1
else if id2==dummy_id then -1
else Pervasives.compare id1 id2
module OrderedInstance=
struct
type t=instance * Libnames.global_reference
let compare (inst1,id1) (inst2,id2)=
(compare_instance =? compare_gr) inst2 inst1 id2 id1
(* we want a __decreasing__ total order *)
end
module IS=Set.Make(OrderedInstance)
let make_simple_atoms seq=
let ratoms=
match seq.glatom with
Some t->[t]
| None->[]
in {negative=seq.latoms;positive=ratoms}
let do_sequent setref triv id seq i dom atoms=
let flag=ref true in
let phref=ref triv in
let do_atoms a1 a2 =
let do_pair t1 t2 =
match unif_atoms i dom t1 t2 with
None->()
| Some (Phantom _) ->phref:=true
| Some c ->flag:=false;setref:=IS.add (c,id) !setref in
List.iter (fun t->List.iter (do_pair t) a2.negative) a1.positive;
List.iter (fun t->List.iter (do_pair t) a2.positive) a1.negative in
HP.iter (fun lf->do_atoms atoms lf.atoms) seq.redexes;
do_atoms atoms (make_simple_atoms seq);
!flag && !phref
let match_one_quantified_hyp setref seq lf=
match lf.pat with
Left(Lforall(i,dom,triv))|Right(Rexists(i,dom,triv))->
if do_sequent setref triv lf.id seq i dom lf.atoms then
setref:=IS.add ((Phantom dom),lf.id) !setref
| _ ->anomaly "can't happen"
let give_instances lf seq=
let setref=ref IS.empty in
List.iter (match_one_quantified_hyp setref seq) lf;
IS.elements !setref
(* collector for the engine *)
let rec collect_quantified seq=
try
let hd,seq1=take_formula seq in
(match hd.pat with
Left(Lforall(_,_,_)) | Right(Rexists(_,_,_)) ->
let (q,seq2)=collect_quantified seq1 in
((hd::q),seq2)
| _->[],seq)
with Heap.EmptyHeap -> [],seq
(* open instances processor *)
let dummy_constr=mkMeta (-1)
let dummy_bvid=id_of_string "x"
let mk_open_instance id gl m t=
let env=pf_env gl in
let evmap=Refiner.sig_sig gl in
let var_id=
if id==dummy_id then dummy_bvid else
let typ=pf_type_of gl (constr_of_reference id) in
(* since we know we will get a product,
reduction is not too expensive *)
let (nam,_,_)=destProd (whd_betadeltaiota env evmap typ) in
match nam with
Name id -> id
| Anonymous -> dummy_bvid in
let revt=substl (list_tabulate (fun i->mkRel (m-i)) m) t in
let rec aux n avoid=
if n=0 then [] else
let nid=(fresh_id avoid var_id gl) in
(Name nid,None,dummy_constr)::(aux (n-1) (nid::avoid)) in
let nt=it_mkLambda_or_LetIn revt (aux m []) in
let rawt=Detyping.detype (false,env) [] [] nt in
let rec raux n t=
if n=0 then t else
match t with
RLambda(loc,name,_,t0)->
let t1=raux (n-1) t0 in
RLambda(loc,name,RHole (dummy_loc,BinderType name),t1)
| _-> anomaly "can't happen" in
let ntt=Pretyping.understand evmap env (raux m rawt) in
Sign.decompose_lam_n_assum m ntt
(* tactics *)
let left_instance_tac (inst,id) continue seq=
match inst with
Phantom dom->
if lookup (id,None) seq then
tclFAIL 0 "already done"
else
tclTHENS (cut dom)
[tclTHENLIST
[introf;
(fun gls->generalize
[mkApp(constr_of_reference id,
[|mkVar (Tacmach.pf_nth_hyp_id gls 1)|])] gls);
introf;
tclSOLVE [wrap 1 false continue
(deepen (record (id,None) seq))]];
tclTRY assumption]
| Real((m,t) as c,_)->
if lookup (id,Some c) seq then
tclFAIL 0 "already done"
else
let special_generalize=
if m>0 then
fun gl->
let (rc,ot)= mk_open_instance id gl m t in
let gt=
it_mkLambda_or_LetIn
(mkApp(constr_of_reference id,[|ot|])) rc in
generalize [gt] gl
else
generalize [mkApp(constr_of_reference id,[|t|])]
in
tclTHENLIST
[special_generalize;
introf;
tclSOLVE
[wrap 1 false continue (deepen (record (id,Some c) seq))]]
let right_instance_tac inst continue seq=
match inst with
Phantom dom ->
tclTHENS (cut dom)
[tclTHENLIST
[introf;
(fun gls->
split (Rawterm.ImplicitBindings
[mkVar (Tacmach.pf_nth_hyp_id gls 1)]) gls);
tclSOLVE [wrap 0 true continue (deepen seq)]];
tclTRY assumption]
| Real ((0,t),_) ->
(tclTHEN (split (Rawterm.ImplicitBindings [t]))
(tclSOLVE [wrap 0 true continue (deepen seq)]))
| Real ((m,t),_) ->
tclFAIL 0 "not implemented ... yet"
let instance_tac inst=
if (snd inst)==dummy_id then
right_instance_tac (fst inst)
else
left_instance_tac inst
let quantified_tac lf backtrack continue seq gl=
let insts=give_instances lf seq in
tclORELSE
(tclFIRST (List.map (fun inst->instance_tac inst continue seq) insts))
backtrack gl
|