1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: mlutil.ml,v 1.104.2.3 2005/12/01 16:28:04 letouzey Exp $ i*)
(*i*)
open Pp
open Util
open Names
open Libnames
open Nametab
open Table
open Miniml
(*i*)
(*s Exceptions. *)
exception Found
exception Impossible
(*S Names operations. *)
let anonymous = id_of_string "x"
let dummy_name = id_of_string "_"
let id_of_name = function
| Anonymous -> anonymous
| Name id when id = dummy_name -> anonymous
| Name id -> id
(*S Operations upon ML types (with meta). *)
let meta_count = ref 0
let reset_meta_count () = meta_count := 0
let new_meta _ =
incr meta_count;
Tmeta {id = !meta_count; contents = None}
(*s Sustitution of [Tvar i] by [t] in a ML type. *)
let type_subst i t0 t =
let rec subst t = match t with
| Tvar j when i = j -> t0
| Tmeta {contents=None} -> t
| Tmeta {contents=Some u} -> subst u
| Tarr (a,b) -> Tarr (subst a, subst b)
| Tglob (r, l) -> Tglob (r, List.map subst l)
| a -> a
in subst t
(* Simultaneous substitution of [[Tvar 1; ... ; Tvar n]] by [l] in a ML type. *)
let type_subst_list l t =
let rec subst t = match t with
| Tvar j -> List.nth l (j-1)
| Tmeta {contents=None} -> t
| Tmeta {contents=Some u} -> subst u
| Tarr (a,b) -> Tarr (subst a, subst b)
| Tglob (r, l) -> Tglob (r, List.map subst l)
| a -> a
in subst t
(* Simultaneous substitution of [[|Tvar 1; ... ; Tvar n|]] by [v] in a ML type. *)
let type_subst_vect v t =
let rec subst t = match t with
| Tvar j -> v.(j-1)
| Tmeta {contents=None} -> t
| Tmeta {contents=Some u} -> subst u
| Tarr (a,b) -> Tarr (subst a, subst b)
| Tglob (r, l) -> Tglob (r, List.map subst l)
| a -> a
in subst t
(*s From a type schema to a type. All [Tvar] become fresh [Tmeta]. *)
let instantiation (nb,t) = type_subst_vect (Array.init nb new_meta) t
(*s Occur-check of a free meta in a type *)
let rec type_occurs alpha t =
match t with
| Tmeta {id=beta; contents=None} -> alpha = beta
| Tmeta {contents=Some u} -> type_occurs alpha u
| Tarr (t1, t2) -> type_occurs alpha t1 || type_occurs alpha t2
| Tglob (r,l) -> List.exists (type_occurs alpha) l
| _ -> false
(*s Most General Unificator *)
let rec mgu = function
| Tmeta m, Tmeta m' when m.id = m'.id -> ()
| Tmeta m, t when m.contents=None ->
if type_occurs m.id t then raise Impossible
else m.contents <- Some t
| t, Tmeta m when m.contents=None ->
if type_occurs m.id t then raise Impossible
else m.contents <- Some t
| Tmeta {contents=Some u}, t -> mgu (u, t)
| t, Tmeta {contents=Some u} -> mgu (t, u)
| Tarr(a, b), Tarr(a', b') ->
mgu (a, a'); mgu (b, b')
| Tglob (r,l), Tglob (r',l') when r = r' ->
List.iter mgu (List.combine l l')
| Tvar i, Tvar j when i = j -> ()
| Tvar' i, Tvar' j when i = j -> ()
| Tdummy, Tdummy -> ()
| Tunknown, Tunknown -> ()
| _ -> raise Impossible
let needs_magic p = try mgu p; false with Impossible -> true
let put_magic_if b a = if b && lang () <> Scheme then MLmagic a else a
let put_magic p a = if needs_magic p && lang () <> Scheme then MLmagic a else a
(*S ML type env. *)
module Mlenv = struct
let meta_cmp m m' = compare m.id m'.id
module Metaset = Set.Make(struct type t = ml_meta let compare = meta_cmp end)
(* Main MLenv type. [env] is the real environment, whereas [free]
(tries to) record the free meta variables occurring in [env]. *)
type t = { env : ml_schema list; mutable free : Metaset.t}
(* Empty environment. *)
let empty = { env = []; free = Metaset.empty }
(* [get] returns a instantiated copy of the n-th most recently added
type in the environment. *)
let get mle n =
assert (List.length mle.env >= n);
instantiation (List.nth mle.env (n-1))
(* [find_free] finds the free meta in a type. *)
let rec find_free set = function
| Tmeta m when m.contents = None -> Metaset.add m set
| Tmeta {contents = Some t} -> find_free set t
| Tarr (a,b) -> find_free (find_free set a) b
| Tglob (_,l) -> List.fold_left find_free set l
| _ -> set
(* The [free] set of an environment can be outdate after
some unifications. [clean_free] takes care of that. *)
let clean_free mle =
let rem = ref Metaset.empty
and add = ref Metaset.empty in
let clean m = match m.contents with
| None -> ()
| Some u -> rem := Metaset.add m !rem; add := find_free !add u
in
Metaset.iter clean mle.free;
mle.free <- Metaset.union (Metaset.diff mle.free !rem) !add
(* From a type to a type schema. If a [Tmeta] is still uninstantiated
and does appears in the [mle], then it becomes a [Tvar]. *)
let generalization mle t =
let c = ref 0 in
let map = ref (Intmap.empty : int Intmap.t) in
let add_new i = incr c; map := Intmap.add i !c !map; !c in
let rec meta2var t = match t with
| Tmeta {contents=Some u} -> meta2var u
| Tmeta ({id=i} as m) ->
(try Tvar (Intmap.find i !map)
with Not_found ->
if Metaset.mem m mle.free then t
else Tvar (add_new i))
| Tarr (t1,t2) -> Tarr (meta2var t1, meta2var t2)
| Tglob (r,l) -> Tglob (r, List.map meta2var l)
| t -> t
in !c, meta2var t
(* Adding a type in an environment, after generalizing. *)
let push_gen mle t =
clean_free mle;
{ env = generalization mle t :: mle.env; free = mle.free }
(* Adding a type with no [Tvar], hence no generalization needed. *)
let push_type {env=e;free=f} t =
{ env = (0,t) :: e; free = find_free f t}
(* Adding a type with no [Tvar] nor [Tmeta]. *)
let push_std_type {env=e;free=f} t =
{ env = (0,t) :: e; free = f}
end
(*S Operations upon ML types (without meta). *)
(*s Does a section path occur in a ML type ? *)
let rec type_mem_kn kn = function
| Tmeta _ -> assert false
| Tglob (r,l) -> (kn_of_r r) = kn || List.exists (type_mem_kn kn) l
| Tarr (a,b) -> (type_mem_kn kn a) || (type_mem_kn kn b)
| _ -> false
(*s Greatest variable occurring in [t]. *)
let type_maxvar t =
let rec parse n = function
| Tmeta _ -> assert false
| Tvar i -> max i n
| Tarr (a,b) -> parse (parse n a) b
| Tglob (_,l) -> List.fold_left parse n l
| _ -> n
in parse 0 t
(*s From [a -> b -> c] to [[a;b],c]. *)
let rec type_decomp = function
| Tmeta _ -> assert false
| Tarr (a,b) -> let l,h = type_decomp b in a::l, h
| a -> [],a
(*s The converse: From [[a;b],c] to [a -> b -> c]. *)
let rec type_recomp (l,t) = match l with
| [] -> t
| a::l -> Tarr (a, type_recomp (l,t))
(*s Translating [Tvar] to [Tvar'] to avoid clash. *)
let rec var2var' = function
| Tmeta _ -> assert false
| Tvar i -> Tvar' i
| Tarr (a,b) -> Tarr (var2var' a, var2var' b)
| Tglob (r,l) -> Tglob (r, List.map var2var' l)
| a -> a
type abbrev_map = global_reference -> ml_type option
(*s Delta-reduction of type constants everywhere in a ML type [t].
[env] is a function of type [ml_type_env]. *)
let type_expand env t =
let rec expand = function
| Tmeta _ -> assert false
| Tglob (r,l) as t ->
(match env r with
| Some mlt -> expand (type_subst_list l mlt)
| None -> Tglob (r, List.map expand l))
| Tarr (a,b) -> Tarr (expand a, expand b)
| a -> a
in expand t
(*s Idem, but only at the top level of implications. *)
let is_arrow = function Tarr _ -> true | _ -> false
let type_weak_expand env t =
let rec expand = function
| Tmeta _ -> assert false
| Tglob (r,l) as t ->
(match env r with
| Some mlt ->
let u = expand (type_subst_list l mlt) in
if is_arrow u then u else t
| None -> t)
| Tarr (a,b) -> Tarr (a, expand b)
| a -> a
in expand t
(*s Equality over ML types modulo delta-reduction *)
let type_eq env t t' = (type_expand env t = type_expand env t')
let type_neq env t t' = (type_expand env t <> type_expand env t')
(*s Generating a signature from a ML type. *)
let type_to_sign env t =
let rec f = function
| Tmeta _ -> assert false
| Tarr (a,b) -> (Tdummy <> a) :: (f b)
| _ -> []
in f (type_expand env t)
(*s Removing [Tdummy] from the top level of a ML type. *)
let type_expunge env t =
let s = type_to_sign env t in
if s = [] then t
else if List.mem true s then
let rec f t s =
if List.mem false s then
match t with
| Tmeta _ -> assert false
| Tarr (a,b) ->
let t = f b (List.tl s) in
if List.hd s then Tarr (a, t) else t
| Tglob (r,l) ->
(match env r with
| Some mlt -> f (type_subst_list l mlt) s
| None -> assert false)
| _ -> assert false
else t
in f t s
else Tarr (Tdummy, snd (type_decomp (type_weak_expand env t)))
(*S Generic functions over ML ast terms. *)
(*s [ast_iter_rel f t] applies [f] on every [MLrel] in t. It takes care
of the number of bingings crossed before reaching the [MLrel]. *)
let ast_iter_rel f =
let rec iter n = function
| MLrel i -> f (i-n)
| MLlam (_,a) -> iter (n+1) a
| MLletin (_,a,b) -> iter n a; iter (n+1) b
| MLcase (_,a,v) ->
iter n a; Array.iter (fun (_,l,t) -> iter (n + (List.length l)) t) v
| MLfix (_,ids,v) -> let k = Array.length ids in Array.iter (iter (n+k)) v
| MLapp (a,l) -> iter n a; List.iter (iter n) l
| MLcons (_,_,l) -> List.iter (iter n) l
| MLmagic a -> iter n a
| MLglob _ | MLexn _ | MLdummy | MLaxiom -> ()
in iter 0
(*s Map over asts. *)
let ast_map_case f (c,ids,a) = (c,ids,f a)
let ast_map f = function
| MLlam (i,a) -> MLlam (i, f a)
| MLletin (i,a,b) -> MLletin (i, f a, f b)
| MLcase (i,a,v) -> MLcase (i,f a, Array.map (ast_map_case f) v)
| MLfix (i,ids,v) -> MLfix (i, ids, Array.map f v)
| MLapp (a,l) -> MLapp (f a, List.map f l)
| MLcons (i,c,l) -> MLcons (i,c, List.map f l)
| MLmagic a -> MLmagic (f a)
| MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> a
(*s Map over asts, with binding depth as parameter. *)
let ast_map_lift_case f n (c,ids,a) = (c,ids, f (n+(List.length ids)) a)
let ast_map_lift f n = function
| MLlam (i,a) -> MLlam (i, f (n+1) a)
| MLletin (i,a,b) -> MLletin (i, f n a, f (n+1) b)
| MLcase (i,a,v) -> MLcase (i,f n a,Array.map (ast_map_lift_case f n) v)
| MLfix (i,ids,v) ->
let k = Array.length ids in MLfix (i,ids,Array.map (f (k+n)) v)
| MLapp (a,l) -> MLapp (f n a, List.map (f n) l)
| MLcons (i,c,l) -> MLcons (i,c, List.map (f n) l)
| MLmagic a -> MLmagic (f n a)
| MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> a
(*s Iter over asts. *)
let ast_iter_case f (c,ids,a) = f a
let ast_iter f = function
| MLlam (i,a) -> f a
| MLletin (i,a,b) -> f a; f b
| MLcase (_,a,v) -> f a; Array.iter (ast_iter_case f) v
| MLfix (i,ids,v) -> Array.iter f v
| MLapp (a,l) -> f a; List.iter f l
| MLcons (_,c,l) -> List.iter f l
| MLmagic a -> f a
| MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> ()
(*S Operations concerning De Bruijn indices. *)
(*s [ast_occurs k t] returns [true] if [(Rel k)] occurs in [t]. *)
let ast_occurs k t =
try
ast_iter_rel (fun i -> if i = k then raise Found) t; false
with Found -> true
(*s [occurs_itvl k k' t] returns [true] if there is a [(Rel i)]
in [t] with [k<=i<=k'] *)
let ast_occurs_itvl k k' t =
try
ast_iter_rel (fun i -> if (k <= i) && (i <= k') then raise Found) t; false
with Found -> true
(*s Number of occurences of [Rel k] and [Rel 1] in [t]. *)
let nb_occur_k k t =
let cpt = ref 0 in
ast_iter_rel (fun i -> if i = k then incr cpt) t;
!cpt
let nb_occur t = nb_occur_k 1 t
(* Number of occurences of [Rel 1] in [t], with special treatment of match:
occurences in different branches aren't added, but we rather use max. *)
let nb_occur_match =
let rec nb k = function
| MLrel i -> if i = k then 1 else 0
| MLcase(_,a,v) ->
(nb k a) +
Array.fold_left
(fun r (_,ids,a) -> max r (nb (k+(List.length ids)) a)) 0 v
| MLletin (_,a,b) -> (nb k a) + (nb (k+1) b)
| MLfix (_,ids,v) -> let k = k+(Array.length ids) in
Array.fold_left (fun r a -> r+(nb k a)) 0 v
| MLlam (_,a) -> nb (k+1) a
| MLapp (a,l) -> List.fold_left (fun r a -> r+(nb k a)) (nb k a) l
| MLcons (_,_,l) -> List.fold_left (fun r a -> r+(nb k a)) 0 l
| MLmagic a -> nb k a
| MLglob _ | MLexn _ | MLdummy | MLaxiom -> 0
in nb 1
(*s Lifting on terms.
[ast_lift k t] lifts the binding depth of [t] across [k] bindings. *)
let ast_lift k t =
let rec liftrec n = function
| MLrel i as a -> if i-n < 1 then a else MLrel (i+k)
| a -> ast_map_lift liftrec n a
in if k = 0 then t else liftrec 0 t
let ast_pop t = ast_lift (-1) t
(*s [permut_rels k k' c] translates [Rel 1 ... Rel k] to [Rel (k'+1) ...
Rel (k'+k)] and [Rel (k+1) ... Rel (k+k')] to [Rel 1 ... Rel k'] *)
let permut_rels k k' =
let rec permut n = function
| MLrel i as a ->
let i' = i-n in
if i'<1 || i'>k+k' then a
else if i'<=k then MLrel (i+k')
else MLrel (i-k)
| a -> ast_map_lift permut n a
in permut 0
(*s Substitution. [ml_subst e t] substitutes [e] for [Rel 1] in [t].
Lifting (of one binder) is done at the same time. *)
let ast_subst e =
let rec subst n = function
| MLrel i as a ->
let i' = i-n in
if i'=1 then ast_lift n e
else if i'<1 then a
else MLrel (i-1)
| a -> ast_map_lift subst n a
in subst 0
(*s Generalized substitution.
[gen_subst v d t] applies to [t] the substitution coded in the
[v] array: [(Rel i)] becomes [v.(i-1)]. [d] is the correction applies
to [Rel] greater than [Array.length v]. *)
let gen_subst v d t =
let rec subst n = function
| MLrel i as a ->
let i'= i-n in
if i' < 1 then a
else if i' <= Array.length v then
ast_lift n v.(i'-1)
else MLrel (i+d)
| a -> ast_map_lift subst n a
in subst 0 t
(*S Operations concerning lambdas. *)
(*s [collect_lams MLlam(id1,...MLlam(idn,t)...)] returns
[[idn;...;id1]] and the term [t]. *)
let collect_lams =
let rec collect acc = function
| MLlam(id,t) -> collect (id::acc) t
| x -> acc,x
in collect []
(*s [collect_n_lams] does the same for a precise number of [MLlam]. *)
let collect_n_lams =
let rec collect acc n t =
if n = 0 then acc,t
else match t with
| MLlam(id,t) -> collect (id::acc) (n-1) t
| _ -> assert false
in collect []
(*s [remove_n_lams] just removes some [MLlam]. *)
let rec remove_n_lams n t =
if n = 0 then t
else match t with
| MLlam(_,t) -> remove_n_lams (n-1) t
| _ -> assert false
(*s [nb_lams] gives the number of head [MLlam]. *)
let rec nb_lams = function
| MLlam(_,t) -> succ (nb_lams t)
| _ -> 0
(*s [named_lams] does the converse of [collect_lams]. *)
let rec named_lams ids a = match ids with
| [] -> a
| id :: ids -> named_lams ids (MLlam (id,a))
(*s The same in anonymous version. *)
let rec anonym_lams a = function
| 0 -> a
| n -> anonym_lams (MLlam (anonymous,a)) (pred n)
(*s Idem for [dummy_name]. *)
let rec dummy_lams a = function
| 0 -> a
| n -> dummy_lams (MLlam (dummy_name,a)) (pred n)
(*s mixed according to a signature. *)
let rec anonym_or_dummy_lams a = function
| [] -> a
| true :: s -> MLlam(anonymous, anonym_or_dummy_lams a s)
| false :: s -> MLlam(dummy_name, anonym_or_dummy_lams a s)
(*S Operations concerning eta. *)
(*s The following function creates [MLrel n;...;MLrel 1] *)
let rec eta_args n =
if n = 0 then [] else (MLrel n)::(eta_args (pred n))
(*s Same, but filtered by a signature. *)
let rec eta_args_sign n = function
| [] -> []
| true :: s -> (MLrel n) :: (eta_args_sign (n-1) s)
| false :: s -> eta_args_sign (n-1) s
(*s This one tests [MLrel (n+k); ... ;MLrel (1+k)] *)
let rec test_eta_args_lift k n = function
| [] -> n=0
| a :: q -> (a = (MLrel (k+n))) && (test_eta_args_lift k (pred n) q)
(*s Computes an eta-reduction. *)
let eta_red e =
let ids,t = collect_lams e in
let n = List.length ids in
if n = 0 then e
else match t with
| MLapp (f,a) ->
let m = (List.length a) - n in
if m < 0 then e
else
let a1,a2 = list_chop m a in
let f = if m = 0 then f else MLapp (f,a1) in
if test_eta_args_lift 0 n a2 && not (ast_occurs_itvl 1 n f)
then ast_lift (-n) f
else e
| _ -> e
(*s Computes all head linear beta-reductions possible in [(t a)].
Non-linear head beta-redex become let-in. *)
let rec linear_beta_red a t = match a,t with
| [], _ -> t
| a0::a, MLlam (id,t) ->
(match nb_occur_match t with
| 0 -> linear_beta_red a (ast_pop t)
| 1 -> linear_beta_red a (ast_subst a0 t)
| _ ->
let a = List.map (ast_lift 1) a in
MLletin (id, a0, linear_beta_red a t))
| _ -> MLapp (t, a)
(*s Applies a substitution [s] of constants by their body, plus
linear beta reductions at modified positions. *)
let rec ast_glob_subst s t = match t with
| MLapp ((MLglob (ConstRef kn)) as f, a) ->
let a = List.map (ast_glob_subst s) a in
(try linear_beta_red a (KNmap.find kn s)
with Not_found -> MLapp (f, a))
| MLglob (ConstRef kn) -> (try KNmap.find kn s with Not_found -> t)
| _ -> ast_map (ast_glob_subst s) t
(*S Auxiliary functions used in simplification of ML cases. *)
(*s [check_and_generalize (r0,l,c)] transforms any [MLcons(r0,l)] in [MLrel 1]
and raises [Impossible] if any variable in [l] occurs outside such a
[MLcons] *)
let check_and_generalize (r0,l,c) =
let nargs = List.length l in
let rec genrec n = function
| MLrel i as c ->
let i' = i-n in
if i'<1 then c
else if i'>nargs then MLrel (i-nargs+1)
else raise Impossible
| MLcons(_,r,args) when r=r0 && (test_eta_args_lift n nargs args) ->
MLrel (n+1)
| a -> ast_map_lift genrec n a
in genrec 0 c
(*s [check_generalizable_case] checks if all branches can be seen as the
same function [f] applied to the term matched. It is a generalized version
of the identity case optimization. *)
(* CAVEAT: this optimization breaks typing in some special case. example:
[type 'x a = A]. Then [let f = function A -> A] has type ['x a -> 'y a],
which is incompatible with the type of [let f x = x].
By default, we brutally disable this optim except for some known types:
[bool], [sumbool], [sumor] *)
let generalizable_list =
let datatypes = MPfile (dirpath_of_string "Coq.Init.Datatypes")
and specif = MPfile (dirpath_of_string "Coq.Init.Specif")
in
[ make_kn datatypes empty_dirpath (mk_label "bool");
make_kn specif empty_dirpath (mk_label "sumbool");
make_kn specif empty_dirpath (mk_label "sumor") ]
let check_generalizable_case unsafe br =
if not unsafe then
(match br.(0) with
| ConstructRef ((kn,_),_), _, _ ->
if not (List.mem kn generalizable_list) then raise Impossible
| _ -> assert false);
let f = check_and_generalize br.(0) in
for i = 1 to Array.length br - 1 do
if check_and_generalize br.(i) <> f then raise Impossible
done; f
(*s Do all branches correspond to the same thing? *)
let check_constant_case br =
if br = [||] then raise Impossible;
let (r,l,t) = br.(0) in
let n = List.length l in
if ast_occurs_itvl 1 n t then raise Impossible;
let cst = ast_lift (-n) t in
for i = 1 to Array.length br - 1 do
let (r,l,t) = br.(i) in
let n = List.length l in
if (ast_occurs_itvl 1 n t) || (cst <> (ast_lift (-n) t))
then raise Impossible
done; cst
(*s If all branches are functions, try to permut the case and the functions. *)
let rec merge_ids ids ids' = match ids,ids' with
| [],l -> l
| l,[] -> l
| i::ids, i'::ids' ->
(if i = dummy_name then i' else i) :: (merge_ids ids ids')
let is_exn = function MLexn _ -> true | _ -> false
let rec permut_case_fun br acc =
let nb = ref max_int in
Array.iter (fun (_,_,t) ->
let ids, c = collect_lams t in
let n = List.length ids in
if (n < !nb) && (not (is_exn c)) then nb := n) br;
if !nb = max_int || !nb = 0 then ([],br)
else begin
let br = Array.copy br in
let ids = ref [] in
for i = 0 to Array.length br - 1 do
let (r,l,t) = br.(i) in
let local_nb = nb_lams t in
if local_nb < !nb then (* t = MLexn ... *)
br.(i) <- (r,l,remove_n_lams local_nb t)
else begin
let local_ids,t = collect_n_lams !nb t in
ids := merge_ids !ids local_ids;
br.(i) <- (r,l,permut_rels !nb (List.length l) t)
end
done;
(!ids,br)
end
(*S Generalized iota-reduction. *)
(* Definition of a generalized iota-redex: it's a [MLcase(e,_)]
with [(is_iota_gen e)=true]. Any generalized iota-redex is
transformed into beta-redexes. *)
let rec is_iota_gen = function
| MLcons _ -> true
| MLcase(_,_,br)-> array_for_all (fun (_,_,t)->is_iota_gen t) br
| _ -> false
let constructor_index = function
| ConstructRef (_,j) -> pred j
| _ -> assert false
let iota_gen br =
let rec iota k = function
| MLcons (i,r,a) ->
let (_,ids,c) = br.(constructor_index r) in
let c = List.fold_right (fun id t -> MLlam (id,t)) ids c in
let c = ast_lift k c in
MLapp (c,a)
| MLcase(i,e,br') ->
let new_br =
Array.map (fun (n,i,c)->(n,i,iota (k+(List.length i)) c)) br'
in MLcase(i,e, new_br)
| _ -> assert false
in iota 0
let is_atomic = function
| MLrel _ | MLglob _ | MLexn _ | MLdummy -> true
| _ -> false
(*S The main simplification function. *)
(* Some beta-iota reductions + simplifications. *)
let rec simpl o = function
| MLapp (f, []) ->
simpl o f
| MLapp (f, a) ->
simpl_app o (List.map (simpl o) a) (simpl o f)
| MLcase (i,e,br) ->
let br = Array.map (fun (n,l,t) -> (n,l,simpl o t)) br in
simpl_case o i br (simpl o e)
| MLletin(id,c,e) ->
let e = (simpl o e) in
if
(id = dummy_name) || (is_atomic c) || (is_atomic e) ||
(let n = nb_occur_match e in n = 0 || (n=1 && o.opt_lin_let))
then
simpl o (ast_subst c e)
else
MLletin(id, simpl o c, e)
| MLfix(i,ids,c) ->
let n = Array.length ids in
if ast_occurs_itvl 1 n c.(i) then
MLfix (i, ids, Array.map (simpl o) c)
else simpl o (ast_lift (-n) c.(i)) (* Dummy fixpoint *)
| a -> ast_map (simpl o) a
and simpl_app o a = function
| MLapp (f',a') -> simpl_app o (a'@a) f'
| MLlam (id,t) when id = dummy_name ->
simpl o (MLapp (ast_pop t, List.tl a))
| MLlam (id,t) -> (* Beta redex *)
(match nb_occur_match t with
| 0 -> simpl o (MLapp (ast_pop t, List.tl a))
| 1 when o.opt_lin_beta ->
simpl o (MLapp (ast_subst (List.hd a) t, List.tl a))
| _ ->
let a' = List.map (ast_lift 1) (List.tl a) in
simpl o (MLletin (id, List.hd a, MLapp (t, a'))))
| MLletin (id,e1,e2) when o.opt_let_app ->
(* Application of a letin: we push arguments inside *)
MLletin (id, e1, simpl o (MLapp (e2, List.map (ast_lift 1) a)))
| MLcase (i,e,br) when o.opt_case_app ->
(* Application of a case: we push arguments inside *)
let br' =
Array.map
(fun (n,l,t) ->
let k = List.length l in
let a' = List.map (ast_lift k) a in
(n, l, simpl o (MLapp (t,a')))) br
in simpl o (MLcase (i,e,br'))
| (MLdummy | MLexn _) as e -> e
(* We just discard arguments in those cases. *)
| f -> MLapp (f,a)
and simpl_case o i br e =
if o.opt_case_iot && (is_iota_gen e) then (* Generalized iota-redex *)
simpl o (iota_gen br e)
else
try (* Does a term [f] exist such that each branch is [(f e)] ? *)
if not o.opt_case_idr then raise Impossible;
let f = check_generalizable_case o.opt_case_idg br in
simpl o (MLapp (MLlam (anonymous,f),[e]))
with Impossible ->
try (* Is each branch independant of [e] ? *)
if not o.opt_case_cst then raise Impossible;
check_constant_case br
with Impossible ->
(* Swap the case and the lam if possible *)
if o.opt_case_fun
then
let ids,br = permut_case_fun br [] in
let n = List.length ids in
if n <> 0 then named_lams ids (MLcase (i,ast_lift n e, br))
else MLcase (i,e,br)
else MLcase (i,e,br)
let rec post_simpl = function
| MLletin(_,c,e) when (is_atomic (eta_red c)) ->
post_simpl (ast_subst (eta_red c) e)
| a -> ast_map post_simpl a
(*S Local prop elimination. *)
(* We try to eliminate as many [prop] as possible inside an [ml_ast]. *)
(*s In a list, it selects only the elements corresponding to a [true]
in the boolean list [l]. *)
let rec select_via_bl l args = match l,args with
| [],_ -> args
| true::l,a::args -> a :: (select_via_bl l args)
| false::l,a::args -> select_via_bl l args
| _ -> assert false
(*s [kill_some_lams] removes some head lambdas according to the bool list [bl].
This list is build on the identifier list model: outermost lambda
is on the right. [true] means "to keep" and [false] means "to eliminate".
[Rels] corresponding to removed lambdas are supposed not to occur, and
the other [Rels] are made correct via a [gen_subst].
Output is not directly a [ml_ast], compose with [named_lams] if needed. *)
let kill_some_lams bl (ids,c) =
let n = List.length bl in
let n' = List.fold_left (fun n b -> if b then (n+1) else n) 0 bl in
if n = n' then ids,c
else if n' = 0 then [],ast_lift (-n) c
else begin
let v = Array.make n MLdummy in
let rec parse_ids i j = function
| [] -> ()
| true :: l -> v.(i) <- MLrel j; parse_ids (i+1) (j+1) l
| false :: l -> parse_ids (i+1) j l
in parse_ids 0 1 bl ;
select_via_bl bl ids, gen_subst v (n'-n) c
end
(*s [kill_dummy_lams] uses the last function to kill the lambdas corresponding
to a [dummy_name]. It can raise [Impossible] if there is nothing to do, or
if there is no lambda left at all. *)
let kill_dummy_lams c =
let ids,c = collect_lams c in
let bl = List.map ((<>) dummy_name) ids in
if (List.mem true bl) && (List.mem false bl) then
let ids',c = kill_some_lams bl (ids,c) in
ids, named_lams ids' c
else raise Impossible
(*s [eta_expansion_sign] takes a function [fun idn ... id1 -> c]
and a signature [s] and builds a eta-long version. *)
(* For example, if [s = [true;true;false;true]] then the output is :
[fun idn ... id1 x x _ x -> (c' 4 3 __ 1)] with [c' = lift 4 c] *)
let eta_expansion_sign s (ids,c) =
let rec abs ids rels i = function
| [] ->
let a = List.rev_map (function MLrel x -> MLrel (i-x) | a -> a) rels
in ids, MLapp (ast_lift (i-1) c, a)
| true :: l -> abs (anonymous :: ids) (MLrel i :: rels) (i+1) l
| false :: l -> abs (dummy_name :: ids) (MLdummy :: rels) (i+1) l
in abs ids [] 1 s
(*s If [s = [b1; ... ; bn]] then [case_expunge] decomposes [e]
in [n] lambdas (with eta-expansion if needed) and removes all dummy lambdas
corresponding to [false] in [s]. *)
let case_expunge s e =
let m = List.length s in
let n = nb_lams e in
let p = if m <= n then collect_n_lams m e
else eta_expansion_sign (list_skipn n s) (collect_lams e) in
kill_some_lams (List.rev s) p
(*s [term_expunge] takes a function [fun idn ... id1 -> c]
and a signature [s] and remove dummy lams. The difference
with [case_expunge] is that we here leave one dummy lambda
if all lambdas are dummy. *)
let term_expunge s (ids,c) =
if s = [] then c
else
let ids,c = kill_some_lams (List.rev s) (ids,c) in
if ids = [] then MLlam (dummy_name, ast_lift 1 c)
else named_lams ids c
(*s [kill_dummy_args ids t0 t] looks for occurences of [t0] in [t] and
purge the args of [t0] corresponding to a [dummy_name].
It makes eta-expansion if needed. *)
let kill_dummy_args ids t0 t =
let m = List.length ids in
let bl = List.rev_map ((<>) dummy_name) ids in
let rec killrec n = function
| MLapp(e, a) when e = ast_lift n t0 ->
let k = max 0 (m - (List.length a)) in
let a = List.map (killrec n) a in
let a = List.map (ast_lift k) a in
let a = select_via_bl bl (a @ (eta_args k)) in
named_lams (list_firstn k ids) (MLapp (ast_lift k e, a))
| e when e = ast_lift n t0 ->
let a = select_via_bl bl (eta_args m) in
named_lams ids (MLapp (ast_lift m e, a))
| e -> ast_map_lift killrec n e
in killrec 0 t
(*s The main function for local [dummy] elimination. *)
let rec kill_dummy = function
| MLfix(i,fi,c) ->
(try
let ids,c = kill_dummy_fix i fi c in
ast_subst (MLfix (i,fi,c)) (kill_dummy_args ids (MLrel 1) (MLrel 1))
with Impossible -> MLfix (i,fi,Array.map kill_dummy c))
| MLapp (MLfix (i,fi,c),a) ->
(try
let ids,c = kill_dummy_fix i fi c in
let a = List.map (fun t -> ast_lift 1 (kill_dummy t)) a in
let e = kill_dummy_args ids (MLrel 1) (MLapp (MLrel 1,a)) in
ast_subst (MLfix (i,fi,c)) e
with Impossible ->
MLapp(MLfix(i,fi,Array.map kill_dummy c),List.map kill_dummy a))
| MLletin(id, MLfix (i,fi,c),e) ->
(try
let ids,c = kill_dummy_fix i fi c in
let e = kill_dummy (kill_dummy_args ids (MLrel 1) e) in
MLletin(id, MLfix(i,fi,c),e)
with Impossible ->
MLletin(id, MLfix(i,fi,Array.map kill_dummy c),kill_dummy e))
| MLletin(id,c,e) ->
(try
let ids,c = kill_dummy_lams c in
let e = kill_dummy_args ids (MLrel 1) e in
MLletin (id, kill_dummy c,kill_dummy e)
with Impossible -> MLletin(id,kill_dummy c,kill_dummy e))
| a -> ast_map kill_dummy a
and kill_dummy_fix i fi c =
let n = Array.length fi in
let ids,ci = kill_dummy_lams c.(i) in
let c = Array.copy c in c.(i) <- ci;
for j = 0 to (n-1) do
c.(j) <- kill_dummy (kill_dummy_args ids (MLrel (n-i)) c.(j))
done;
ids,c
(*s Putting things together. *)
let normalize a =
let o = optims () in
let a = simpl o a in
if o.opt_kill_dum then post_simpl (kill_dummy a) else a
(*S Special treatment of fixpoint for pretty-printing purpose. *)
let general_optimize_fix f ids n args m c =
let v = Array.make n 0 in
for i=0 to (n-1) do v.(i)<-i done;
let aux i = function
| MLrel j when v.(j-1)>=0 -> v.(j-1)<-(-i-1)
| _ -> raise Impossible
in list_iter_i aux args;
let args_f = List.rev_map (fun i -> MLrel (i+m+1)) (Array.to_list v) in
let new_f = anonym_lams (MLapp (MLrel (n+m+1),args_f)) m in
let new_c = named_lams ids (normalize (MLapp ((ast_subst new_f c),args))) in
MLfix(0,[|f|],[|new_c|])
let optimize_fix a =
if not (optims()).opt_fix_fun then a
else
let ids,a' = collect_lams a in
let n = List.length ids in
if n = 0 then a
else match a' with
| MLfix(_,[|f|],[|c|]) ->
let new_f = MLapp (MLrel (n+1),eta_args n) in
let new_c = named_lams ids (normalize (ast_subst new_f c))
in MLfix(0,[|f|],[|new_c|])
| MLapp(a',args) ->
let m = List.length args in
(match a' with
| MLfix(_,_,_) when
(test_eta_args_lift 0 n args) && not (ast_occurs_itvl 1 m a')
-> a'
| MLfix(_,[|f|],[|c|]) ->
(try general_optimize_fix f ids n args m c
with Impossible ->
named_lams ids (MLapp (MLfix (0,[|f|],[|c|]),args)))
| _ -> a)
| _ -> a
(*S Inlining. *)
(* Utility functions used in the decision of inlining. *)
let rec ml_size = function
| MLapp(t,l) -> List.length l + ml_size t + ml_size_list l
| MLlam(_,t) -> 1 + ml_size t
| MLcons(_,_,l) -> ml_size_list l
| MLcase(_,t,pv) ->
1 + ml_size t + (Array.fold_right (fun (_,_,t) a -> a + ml_size t) pv 0)
| MLfix(_,_,f) -> ml_size_array f
| MLletin (_,_,t) -> ml_size t
| MLmagic t -> ml_size t
| _ -> 0
and ml_size_list l = List.fold_left (fun a t -> a + ml_size t) 0 l
and ml_size_array l = Array.fold_left (fun a t -> a + ml_size t) 0 l
let is_fix = function MLfix _ -> true | _ -> false
let rec is_constr = function
| MLcons _ -> true
| MLlam(_,t) -> is_constr t
| _ -> false
(*s Strictness *)
(* A variable is strict if the evaluation of the whole term implies
the evaluation of this variable. Non-strict variables can be found
behind Match, for example. Expanding a term [t] is a good idea when
it begins by at least one non-strict lambda, since the corresponding
argument to [t] might be unevaluated in the expanded code. *)
exception Toplevel
let lift n l = List.map ((+) n) l
let pop n l = List.map (fun x -> if x<=n then raise Toplevel else x-n) l
(* This function returns a list of de Bruijn indices of non-strict variables,
or raises [Toplevel] if it has an internal non-strict variable.
In fact, not all variables are checked for strictness, only the ones which
de Bruijn index is in the candidates list [cand]. The flag [add] controls
the behaviour when going through a lambda: should we add the corresponding
variable to the candidates? We use this flag to check only the external
lambdas, those that will correspond to arguments. *)
let rec non_stricts add cand = function
| MLlam (id,t) ->
let cand = lift 1 cand in
let cand = if add then 1::cand else cand in
pop 1 (non_stricts add cand t)
| MLrel n ->
List.filter ((<>) n) cand
| MLapp (MLrel n, _) ->
List.filter ((<>) n) cand
(* In [(x y)] we say that only x is strict. Cf [sig_rec]. We may *)
(* gain something if x is replaced by a function like a projection *)
| MLapp (t,l)->
let cand = non_stricts false cand t in
List.fold_left (non_stricts false) cand l
| MLcons (_,_,l) ->
List.fold_left (non_stricts false) cand l
| MLletin (_,t1,t2) ->
let cand = non_stricts false cand t1 in
pop 1 (non_stricts add (lift 1 cand) t2)
| MLfix (_,i,f)->
let n = Array.length i in
let cand = lift n cand in
let cand = Array.fold_left (non_stricts false) cand f in
pop n cand
| MLcase (_,t,v) ->
(* The only interesting case: for a variable to be non-strict, *)
(* it is sufficient that it appears non-strict in at least one branch, *)
(* so we make an union (in fact a merge). *)
let cand = non_stricts false cand t in
Array.fold_left
(fun c (_,i,t)->
let n = List.length i in
let cand = lift n cand in
let cand = pop n (non_stricts add cand t) in
Sort.merge (<=) cand c) [] v
(* [merge] may duplicates some indices, but I don't mind. *)
| MLmagic t ->
non_stricts add cand t
| _ ->
cand
(* The real test: we are looking for internal non-strict variables, so we start
with no candidates, and the only positive answer is via the [Toplevel]
exception. *)
let is_not_strict t =
try let _ = non_stricts true [] t in false
with Toplevel -> true
(*s Inlining decision *)
(* [inline_test] answers the following question:
If we could inline [t] (the user said nothing special),
should we inline ?
We expand small terms with at least one non-strict
variable (i.e. a variable that may not be evaluated).
Futhermore we don't expand fixpoints. *)
let inline_test t =
not (is_fix (eta_red t)) && (ml_size t < 12 && is_not_strict t)
let manual_inline_list =
let mp = MPfile (dirpath_of_string "Coq.Init.Wf") in
List.map (fun s -> (make_kn mp empty_dirpath (mk_label s)))
[ "well_founded_induction_type"; "well_founded_induction";
"Acc_rect"; "Acc_rec" ; "Acc_iter" ]
let manual_inline = function
| ConstRef c -> List.mem c manual_inline_list
| _ -> false
(* If the user doesn't say he wants to keep [t], we inline in two cases:
\begin{itemize}
\item the user explicitly requests it
\item [expansion_test] answers that the inlining is a good idea, and
we are free to act (AutoInline is set)
\end{itemize} *)
let inline r t =
not (to_keep r) (* The user DOES want to keep it *)
&& not (is_inline_custom r)
&& (to_inline r (* The user DOES want to inline it *)
|| (auto_inline () && lang () <> Haskell && not (is_projection r)
&& (is_recursor r || manual_inline r || inline_test t)))
|