1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: extraction.ml,v 1.136.2.1 2004/07/16 19:30:07 herbelin Exp $ i*)
(*i*)
open Util
open Names
open Term
open Declarations
open Environ
open Reduction
open Reductionops
open Inductive
open Termops
open Inductiveops
open Recordops
open Nameops
open Summary
open Libnames
open Nametab
open Miniml
open Table
open Mlutil
(*i*)
exception I of inductive_info
(* A set of all inductive currently being computed,
to avoid loops in [extract_inductive] *)
let internal_call = ref KNset.empty
let none = Evd.empty
let type_of env c = Retyping.get_type_of env none (strip_outer_cast c)
let sort_of env c = Retyping.get_sort_family_of env none (strip_outer_cast c)
let is_axiom env kn = (Environ.lookup_constant kn env).const_body = None
(*S Generation of flags and signatures. *)
(* The type [flag] gives us information about any Coq term:
\begin{itemize}
\item [TypeScheme] denotes a type scheme, that is
something that will become a type after enough applications.
More formally, a type scheme has type $(x_1:X_1)\ldots(x_n:X_n)s$ with
[s = Set], [Prop] or [Type]
\item [Default] denotes the other cases. It may be inexact after
instanciation. For example [(X:Type)X] is [Default] and may give [Set]
after instanciation, which is rather [TypeScheme]
\item [Logic] denotes a term of sort [Prop], or a type scheme on sort [Prop]
\item [Info] is the opposite. The same example [(X:Type)X] shows
that an [Info] term might in fact be [Logic] later on.
\end{itemize} *)
type info = Logic | Info
type scheme = TypeScheme | Default
type flag = info * scheme
(*s [flag_of_type] transforms a type [t] into a [flag].
Really important function. *)
let rec flag_of_type env t =
let t = whd_betadeltaiota env none t in
match kind_of_term t with
| Prod (x,t,c) -> flag_of_type (push_rel (x,None,t) env) c
| Sort (Prop Null) -> (Logic,TypeScheme)
| Sort _ -> (Info,TypeScheme)
| _ -> if (sort_of env t) = InProp then (Logic,Default) else (Info,Default)
(*s Two particular cases of [flag_of_type]. *)
let is_default env t = (flag_of_type env t = (Info, Default))
let is_info_scheme env t = (flag_of_type env t = (Info, TypeScheme))
(*s [type_sign] gernerates a signature aimed at treating a type application. *)
let rec type_sign env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
(is_info_scheme env t)::(type_sign (push_rel_assum (n,t) env) d)
| _ -> []
let rec type_scheme_nb_args env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let n = type_scheme_nb_args (push_rel_assum (n,t) env) d in
if is_info_scheme env t then n+1 else n
| _ -> 0
let _ = register_type_scheme_nb_args type_scheme_nb_args
(*s [type_sign_vl] does the same, plus a type var list. *)
let rec type_sign_vl env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let s,vl = type_sign_vl (push_rel_assum (n,t) env) d in
if not (is_info_scheme env t) then false::s, vl
else true::s, (next_ident_away (id_of_name n) vl) :: vl
| _ -> [],[]
let rec nb_default_params env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let n = nb_default_params (push_rel_assum (n,t) env) d in
if is_default env t then n+1 else n
| _ -> 0
(*S Management of type variable contexts. *)
(* A De Bruijn variable context (db) is a context for translating Coq [Rel]
into ML type [Tvar]. *)
(*s From a type signature toward a type variable context (db). *)
let db_from_sign s =
let rec make i acc = function
| [] -> acc
| true :: l -> make (i+1) (i::acc) l
| false :: l -> make i (0::acc) l
in make 1 [] s
(*s Create a type variable context from indications taken from
an inductive type (see just below). *)
let rec db_from_ind dbmap i =
if i = 0 then []
else (try Intmap.find i dbmap with Not_found -> 0)::(db_from_ind dbmap (i-1))
(*s [parse_ind_args] builds a map: [i->j] iff the i-th Coq argument
of a constructor corresponds to the j-th type var of the ML inductive. *)
(* \begin{itemize}
\item [si] : signature of the inductive
\item [i] : counter of Coq args for [(I args)]
\item [j] : counter of ML type vars
\item [relmax] : total args number of the constructor
\end{itemize} *)
let parse_ind_args si args relmax =
let rec parse i j = function
| [] -> Intmap.empty
| false :: s -> parse (i+1) j s
| true :: s ->
(match kind_of_term args.(i-1) with
| Rel k -> Intmap.add (relmax+1-k) j (parse (i+1) (j+1) s)
| _ -> parse (i+1) (j+1) s)
in parse 1 1 si
(*S Extraction of a type. *)
(* [extract_type env db c args] is used to produce an ML type from the
coq term [(c args)], which is supposed to be a Coq type. *)
(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *)
(* [j] stands for the next ML type var. [j=0] means we do not
generate ML type var anymore (in subterms for example). *)
let rec extract_type env db j c args =
match kind_of_term (whd_betaiotazeta c) with
| App (d, args') ->
(* We just accumulate the arguments. *)
extract_type env db j d (Array.to_list args' @ args)
| Lambda (_,_,d) ->
(match args with
| [] -> assert false (* otherwise the lambda would be reductible. *)
| a :: args -> extract_type env db j (subst1 a d) args)
| Prod (n,t,d) ->
assert (args = []);
let env' = push_rel_assum (n,t) env in
(match flag_of_type env t with
| (Info, Default) ->
(* Standard case: two [extract_type] ... *)
let mld = extract_type env' (0::db) j d [] in
if mld = Tdummy then Tdummy
else Tarr (extract_type env db 0 t [], mld)
| (Info, TypeScheme) when j > 0 ->
(* A new type var. *)
let mld = extract_type env' (j::db) (j+1) d [] in
if mld = Tdummy then Tdummy else Tarr (Tdummy, mld)
| _ ->
let mld = extract_type env' (0::db) j d [] in
if mld = Tdummy then Tdummy else Tarr (Tdummy, mld))
| Sort _ -> Tdummy (* The two logical cases. *)
| _ when sort_of env (applist (c, args)) = InProp -> Tdummy
| Rel n ->
(match lookup_rel n env with
| (_,Some t,_) -> extract_type env db j (lift n t) args
| _ ->
(* Asks [db] a translation for [n]. *)
if n > List.length db then Tunknown
else let n' = List.nth db (n-1) in
if n' = 0 then Tunknown else Tvar n')
| Const kn ->
let r = ConstRef kn in
let cb = lookup_constant kn env in
let typ = cb.const_type in
(match flag_of_type env typ with
| (Info, TypeScheme) ->
let mlt = extract_type_app env db (r, type_sign env typ) args in
(match cb.const_body with
| None -> mlt
| Some _ when is_custom r -> mlt
| Some lbody ->
let newc = applist (Declarations.force lbody, args) in
let mlt' = extract_type env db j newc [] in
(* ML type abbreviations interact badly with Coq *)
(* reduction, so [mlt] and [mlt'] might be different: *)
(* The more precise is [mlt'], extracted after reduction *)
(* The shortest is [mlt], which use abbreviations *)
(* If possible, we take [mlt], otherwise [mlt']. *)
if type_eq (mlt_env env) mlt mlt' then mlt else mlt')
| _ -> (* only other case here: Info, Default, i.e. not an ML type *)
(match cb.const_body with
| None -> Tunknown (* Brutal approximation ... *)
| Some lbody ->
(* We try to reduce. *)
let newc = applist (Declarations.force lbody, args) in
extract_type env db j newc []))
| Ind ((kn,i) as ip) ->
let s = (extract_ind env kn).ind_packets.(i).ip_sign in
extract_type_app env db (IndRef (kn,i),s) args
| Case _ | Fix _ | CoFix _ -> Tunknown
| _ -> assert false
(* [extract_maybe_type] calls [extract_type] when used on a Coq type,
and otherwise returns [Tdummy] or [Tunknown] *)
and extract_maybe_type env db c =
let t = whd_betadeltaiota env none (type_of env c) in
if isSort t then extract_type env db 0 c []
else if sort_of env t = InProp then Tdummy else Tunknown
(*s Auxiliary function dealing with type application.
Precondition: [r] is a type scheme represented by the signature [s],
and is completely applied: [List.length args = List.length s]. *)
and extract_type_app env db (r,s) args =
let ml_args =
List.fold_right
(fun (b,c) a -> if b then
let p = List.length (fst (splay_prod env none (type_of env c))) in
let db = iterate (fun l -> 0 :: l) p db in
(extract_type_scheme env db c p) :: a
else a)
(List.combine s args) []
in Tglob (r, ml_args)
(*S Extraction of a type scheme. *)
(* [extract_type_scheme env db c p] works on a Coq term [c] which is
an informative type scheme. It means that [c] is not a Coq type, but will
be when applied to sufficiently many arguments ([p] in fact).
This function decomposes p lambdas, with eta-expansion if needed. *)
(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *)
and extract_type_scheme env db c p =
if p=0 then extract_type env db 0 c []
else
let c = whd_betaiotazeta c in
match kind_of_term c with
| Lambda (n,t,d) ->
extract_type_scheme (push_rel_assum (n,t) env) db d (p-1)
| _ ->
let rels = fst (splay_prod env none (type_of env c)) in
let env = push_rels_assum rels env in
let eta_args = List.rev_map mkRel (interval 1 p) in
extract_type env db 0 (lift p c) eta_args
(*S Extraction of an inductive type. *)
and extract_ind env kn = (* kn is supposed to be in long form *)
try
if KNset.mem kn !internal_call then lookup_ind kn (* Already started. *)
else if visible_kn kn then lookup_ind kn (* Standard situation. *)
else raise Not_found (* Never trust the table for a internal kn. *)
with Not_found ->
internal_call := KNset.add kn !internal_call;
let mib = Environ.lookup_mind kn env in
(* Everything concerning parameters. *)
(* We do that first, since they are common to all the [mib]. *)
let mip0 = mib.mind_packets.(0) in
let npar = mip0.mind_nparams in
let epar = push_rel_context mip0.mind_params_ctxt env in
(* First pass: we store inductive signatures together with *)
(* their type var list. *)
let packets =
Array.map
(fun mip ->
let b = mip.mind_sort <> (Prop Null) in
let s,v = if b then type_sign_vl env mip.mind_nf_arity else [],[] in
let t = Array.make (Array.length mip.mind_nf_lc) [] in
{ ip_typename = mip.mind_typename;
ip_consnames = mip.mind_consnames;
ip_logical = (not b);
ip_sign = s;
ip_vars = v;
ip_types = t })
mib.mind_packets
in
add_ind kn {ind_info = Standard; ind_nparams = npar; ind_packets = packets};
(* Second pass: we extract constructors *)
for i = 0 to mib.mind_ntypes - 1 do
let p = packets.(i) in
if not p.ip_logical then
let types = arities_of_constructors env (kn,i) in
for j = 0 to Array.length types - 1 do
let t = snd (decompose_prod_n npar types.(j)) in
let prods,head = dest_prod epar t in
let nprods = List.length prods in
let args = match kind_of_term head with
| App (f,args) -> args (* [kind_of_term f = Ind ip] *)
| _ -> [||]
in
let dbmap = parse_ind_args p.ip_sign args (nprods + npar) in
let db = db_from_ind dbmap npar in
p.ip_types.(j) <- extract_type_cons epar db dbmap t (npar+1)
done
done;
(* Third pass: we determine special cases. *)
let ind_info =
try
if not mib.mind_finite then raise (I Coinductive);
if mib.mind_ntypes <> 1 then raise (I Standard);
let p = packets.(0) in
if p.ip_logical then raise (I Standard);
if Array.length p.ip_types <> 1 then raise (I Standard);
let typ = p.ip_types.(0) in
let l = List.filter (type_neq (mlt_env env) Tdummy) typ in
if List.length l = 1 && not (type_mem_kn kn (List.hd l))
then raise (I Singleton);
if l = [] then raise (I Standard);
let ip = (kn, 0) in
if is_custom (IndRef ip) then raise (I Standard);
let projs =
try (find_structure ip).s_PROJ
with Not_found -> raise (I Standard);
in
let n = nb_default_params env mip0.mind_nf_arity in
let projs = try List.map out_some projs with _ -> raise (I Standard) in
let is_true_proj kn =
let (_,body) = Sign.decompose_lam_assum (constant_value env kn) in
match kind_of_term body with
| Rel _ -> false
| Case _ -> true
| _ -> assert false
in
let projs = List.filter is_true_proj projs in
let rec check = function
| [] -> [],[]
| (typ, kn) :: l ->
let l1,l2 = check l in
if type_eq (mlt_env env) Tdummy typ then l1,l2
else
let r = ConstRef kn in
if List.mem false (type_to_sign (mlt_env env) typ)
then r :: l1, l2
else r :: l1, r :: l2
in
add_record kn n (check (List.combine typ projs));
raise (I Record)
with (I info) -> info
in
let i = {ind_info = ind_info; ind_nparams = npar; ind_packets = packets} in
add_ind kn i;
internal_call := KNset.remove kn !internal_call;
i
(*s [extract_type_cons] extracts the type of an inductive
constructor toward the corresponding list of ML types. *)
(* \begin{itemize}
\item [db] is a context for translating Coq [Rel] into ML type [Tvar]
\item [dbmap] is a translation map (produced by a call to [parse_in_args])
\item [i] is the rank of the current product (initially [params_nb+1])
\end{itemize} *)
and extract_type_cons env db dbmap c i =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let env' = push_rel_assum (n,t) env in
let db' = (try Intmap.find i dbmap with Not_found -> 0) :: db in
let l = extract_type_cons env' db' dbmap d (i+1) in
(extract_type env db 0 t []) :: l
| _ -> []
(*s Recording the ML type abbreviation of a Coq type scheme constant. *)
and mlt_env env r = match r with
| ConstRef kn ->
(try
if not (visible_kn kn) then raise Not_found;
match lookup_term kn with
| Dtype (_,vl,mlt) -> Some mlt
| _ -> None
with Not_found ->
let cb = Environ.lookup_constant kn env in
let typ = cb.const_type in
match cb.const_body with
| None -> None
| Some l_body ->
(match flag_of_type env typ with
| Info,TypeScheme ->
let body = Declarations.force l_body in
let s,vl = type_sign_vl env typ in
let db = db_from_sign s in
let t = extract_type_scheme env db body (List.length s)
in add_term kn (Dtype (r, vl, t)); Some t
| _ -> None))
| _ -> None
let type_expand env = type_expand (mlt_env env)
let type_neq env = type_neq (mlt_env env)
let type_to_sign env = type_to_sign (mlt_env env)
let type_expunge env = type_expunge (mlt_env env)
(*s Extraction of the type of a constant. *)
let record_constant_type env kn opt_typ =
try
if not (visible_kn kn) then raise Not_found;
lookup_type kn
with Not_found ->
let typ = match opt_typ with
| None -> constant_type env kn
| Some typ -> typ
in let mlt = extract_type env [] 1 typ []
in let schema = (type_maxvar mlt, mlt)
in add_type kn schema; schema
(*S Extraction of a term. *)
(* Precondition: [(c args)] is not a type scheme, and is informative. *)
(* [mle] is a ML environment [Mlenv.t]. *)
(* [mlt] is the ML type we want our extraction of [(c args)] to have. *)
let rec extract_term env mle mlt c args =
match kind_of_term c with
| App (f,a) ->
extract_term env mle mlt f (Array.to_list a @ args)
| Lambda (n, t, d) ->
let id = id_of_name n in
(match args with
| a :: l ->
(* We make as many [LetIn] as possible. *)
let d' = mkLetIn (Name id,a,t,applistc d (List.map (lift 1) l))
in extract_term env mle mlt d' []
| [] ->
let env' = push_rel_assum (Name id, t) env in
let id, a =
if is_default env t
then id, new_meta ()
else dummy_name, Tdummy in
let b = new_meta () in
(* If [mlt] cannot be unified with an arrow type, then magic! *)
let magic = needs_magic (mlt, Tarr (a, b)) in
let d' = extract_term env' (Mlenv.push_type mle a) b d [] in
put_magic_if magic (MLlam (id, d')))
| LetIn (n, c1, t1, c2) ->
let id = id_of_name n in
let env' = push_rel (Name id, Some c1, t1) env in
let args' = List.map (lift 1) args in
if is_default env t1 then
let a = new_meta () in
let c1' = extract_term env mle a c1 [] in
(* The type of [c1'] is generalized and stored in [mle]. *)
let mle' = Mlenv.push_gen mle a in
MLletin (id, c1', extract_term env' mle' mlt c2 args')
else
let mle' = Mlenv.push_std_type mle Tdummy in
ast_pop (extract_term env' mle' mlt c2 args')
| Const kn ->
extract_cst_app env mle mlt kn args
| Construct cp ->
extract_cons_app env mle mlt cp args
| Rel n ->
(* As soon as the expected [mlt] for the head is known, *)
(* we unify it with an fresh copy of the stored type of [Rel n]. *)
let extract_rel mlt = put_magic (mlt, Mlenv.get mle n) (MLrel n)
in extract_app env mle mlt extract_rel args
| Case ({ci_ind=ip},_,c0,br) ->
extract_app env mle mlt (extract_case env mle (ip,c0,br)) args
| Fix ((_,i),recd) ->
extract_app env mle mlt (extract_fix env mle i recd) args
| CoFix (i,recd) ->
extract_app env mle mlt (extract_fix env mle i recd) args
| Cast (c, _) -> extract_term env mle mlt c args
| Ind _ | Prod _ | Sort _ | Meta _ | Evar _ | Var _ -> assert false
(*s [extract_maybe_term] is [extract_term] for usual terms, else [MLdummy] *)
and extract_maybe_term env mle mlt c =
if is_default env (type_of env c) then extract_term env mle mlt c []
else put_magic (mlt, Tdummy) MLdummy
(*s Generic way to deal with an application. *)
(* We first type all arguments starting with unknown meta types.
This gives us the expected type of the head. Then we use the
[mk_head] to produce the ML head from this type. *)
and extract_app env mle mlt mk_head args =
let metas = List.map new_meta args in
let type_head = type_recomp (metas, mlt) in
let mlargs = List.map2 (extract_maybe_term env mle) metas args in
if mlargs = [] then mk_head type_head else MLapp (mk_head type_head, mlargs)
(*s Auxiliary function used to extract arguments of constant or constructor. *)
and make_mlargs env e s args typs =
let l = ref s in
let keep () = match !l with [] -> true | b :: s -> l:=s; b in
let rec f = function
| [], [] -> []
| a::la, t::lt when keep() -> extract_maybe_term env e t a :: (f (la,lt))
| _::la, _::lt -> f (la,lt)
| _ -> assert false
in f (args,typs)
(*s Extraction of a constant applied to arguments. *)
and extract_cst_app env mle mlt kn args =
(* First, the [ml_schema] of the constant, in expanded version. *)
let nb,t = record_constant_type env kn None in
let schema = nb, type_expand env t in
(* Then the expected type of this constant. *)
let metas = List.map new_meta args in
(* We compare stored and expected types in two steps. *)
(* First, can [kn] be applied to all args ? *)
let a = new_meta () in
let magic1 = needs_magic (type_recomp (metas, a), instantiation schema) in
(* Second, is the resulting type compatible with the expected type [mlt] ? *)
let magic2 = needs_magic (a, mlt) in
(* The internal head receives a magic if [magic1] *)
let head = put_magic_if magic1 (MLglob (ConstRef kn)) in
(* Now, the extraction of the arguments. *)
let s = type_to_sign env (snd schema) in
let ls = List.length s in
let la = List.length args in
let mla = make_mlargs env mle s args metas in
let mla =
if not magic1 then
try
let l,l' = list_chop (projection_arity (ConstRef kn)) mla in
if l' <> [] then (List.map (fun _ -> MLexn "Proj Args") l) @ l'
else mla
with _ -> mla
else mla
in
(* Different situations depending of the number of arguments: *)
if ls = 0 then put_magic_if magic2 head
else if List.mem true s then
if la >= ls then put_magic_if (magic2 && not magic1) (MLapp (head, mla))
else
(* Not enough arguments. We complete via eta-expansion. *)
let ls' = ls-la in
let s' = list_lastn ls' s in
let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in
put_magic_if magic2 (anonym_or_dummy_lams (MLapp (head, mla)) s')
else
(* In the special case of always false signature, one dummy lam is left. *)
(* So a [MLdummy] is left accordingly. *)
if la >= ls
then put_magic_if (magic2 && not magic1) (MLapp (head, MLdummy :: mla))
else put_magic_if magic2 (dummy_lams head (ls-la-1))
(*s Extraction of an inductive constructor applied to arguments. *)
(* \begin{itemize}
\item In ML, contructor arguments are uncurryfied.
\item We managed to suppress logical parts inside inductive definitions,
but they must appears outside (for partial applications for instance)
\item We also suppressed all Coq parameters to the inductives, since
they are fixed, and thus are not used for the computation.
\end{itemize} *)
and extract_cons_app env mle mlt (((kn,i) as ip,j) as cp) args =
(* First, we build the type of the constructor, stored in small pieces. *)
let mi = extract_ind env kn in
let params_nb = mi.ind_nparams in
let oi = mi.ind_packets.(i) in
let nb_tvars = List.length oi.ip_vars
and types = List.map (type_expand env) oi.ip_types.(j-1) in
let list_tvar = List.map (fun i -> Tvar i) (interval 1 nb_tvars) in
let type_cons = type_recomp (types, Tglob (IndRef ip, list_tvar)) in
let type_cons = instantiation (nb_tvars, type_cons) in
(* Then, the usual variables [s], [ls], [la], ... *)
let s = List.map ((<>) Tdummy) types in
let ls = List.length s in
let la = List.length args in
assert (la <= ls + params_nb);
let la' = max 0 (la - params_nb) in
let args' = list_lastn la' args in
(* Now, we build the expected type of the constructor *)
let metas = List.map new_meta args' in
(* If stored and expected types differ, then magic! *)
let a = new_meta () in
let magic1 = needs_magic (type_cons, type_recomp (metas, a)) in
let magic2 = needs_magic (a, mlt) in
let head mla =
if mi.ind_info = Singleton then
put_magic_if magic1 (List.hd mla) (* assert (List.length mla = 1) *)
else put_magic_if magic1 (MLcons (ConstructRef cp, mla))
in
(* Different situations depending of the number of arguments: *)
if la < params_nb then
let head' = head (eta_args_sign ls s) in
put_magic_if magic2
(dummy_lams (anonym_or_dummy_lams head' s) (params_nb - la))
else
let mla = make_mlargs env mle s args' metas in
if la = ls + params_nb
then put_magic_if (magic2 && not magic1) (head mla)
else (* [ params_nb <= la <= ls + params_nb ] *)
let ls' = params_nb + ls - la in
let s' = list_lastn ls' s in
let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in
put_magic_if magic2 (anonym_or_dummy_lams (head mla) s')
(*S Extraction of a case. *)
and extract_case env mle ((kn,i) as ip,c,br) mlt =
(* [br]: bodies of each branch (in functional form) *)
(* [ni]: number of arguments without parameters in each branch *)
let ni = mis_constr_nargs_env env ip in
let br_size = Array.length br in
assert (Array.length ni = br_size);
if br_size = 0 then begin
add_recursors env kn; (* May have passed unseen if logical ... *)
MLexn "absurd case"
end else
(* [c] has an inductive type, and is not a type scheme type. *)
let t = type_of env c in
(* The only non-informative case: [c] is of sort [Prop] *)
if (sort_of env t) = InProp then
begin
add_recursors env kn; (* May have passed unseen if logical ... *)
(* Logical singleton case: *)
(* [match c with C i j k -> t] becomes [t'] *)
assert (br_size = 1);
let s = iterate (fun l -> false :: l) ni.(0) [] in
let mlt = iterate (fun t -> Tarr (Tdummy, t)) ni.(0) mlt in
let e = extract_maybe_term env mle mlt br.(0) in
snd (case_expunge s e)
end
else
let mi = extract_ind env kn in
let params_nb = mi.ind_nparams in
let oi = mi.ind_packets.(i) in
let metas = Array.init (List.length oi.ip_vars) new_meta in
(* The extraction of the head. *)
let type_head = Tglob (IndRef ip, Array.to_list metas) in
let a = extract_term env mle type_head c [] in
(* The extraction of each branch. *)
let extract_branch i =
(* The types of the arguments of the corresponding constructor. *)
let f t = type_subst_vect metas (type_expand env t) in
let l = List.map f oi.ip_types.(i) in
(* Extraction of the branch (in functional form). *)
let e = extract_maybe_term env mle (type_recomp (l,mlt)) br.(i) in
(* We suppress dummy arguments according to signature. *)
let ids,e = case_expunge (List.map ((<>) Tdummy) l) e in
(ConstructRef (ip,i+1), List.rev ids, e)
in
if mi.ind_info = Singleton then
begin
(* Informative singleton case: *)
(* [match c with C i -> t] becomes [let i = c' in t'] *)
assert (br_size = 1);
let (_,ids,e') = extract_branch 0 in
assert (List.length ids = 1);
MLletin (List.hd ids,a,e')
end
else
(* Standard case: we apply [extract_branch]. *)
MLcase (a, Array.init br_size extract_branch)
(*s Extraction of a (co)-fixpoint. *)
and extract_fix env mle i (fi,ti,ci as recd) mlt =
let env = push_rec_types recd env in
let metas = Array.map new_meta fi in
metas.(i) <- mlt;
let mle = Array.fold_left Mlenv.push_type mle metas in
let ei = array_map2 (extract_maybe_term env mle) metas ci in
MLfix (i, Array.map id_of_name fi, ei)
(*S ML declarations. *)
(* [decomp_lams_eta env c t] finds the number [n] of products in the type [t],
and decompose the term [c] in [n] lambdas, with eta-expansion if needed. *)
let rec decomp_lams_eta_n n env c t =
let rels = fst (decomp_n_prod env none n t) in
let rels = List.map (fun (id,_,c) -> (id,c)) rels in
let m = nb_lam c in
if m >= n then decompose_lam_n n c
else
let rels',c = decompose_lam c in
let d = n - m in
(* we'd better keep rels' as long as possible. *)
let rels = (list_firstn d rels) @ rels' in
let eta_args = List.rev_map mkRel (interval 1 d) in
rels, applist (lift d c,eta_args)
(*s From a constant to a ML declaration. *)
let extract_std_constant env kn body typ =
reset_meta_count ();
(* The short type [t] (i.e. possibly with abbreviations). *)
let t = snd (record_constant_type env kn (Some typ)) in
(* The real type [t']: without head lambdas, expanded, *)
(* and with [Tvar] translated to [Tvar'] (not instantiable). *)
let l,t' = type_decomp (type_expand env (var2var' t)) in
let s = List.map ((<>) Tdummy) l in
(* The initial ML environment. *)
let mle = List.fold_left Mlenv.push_std_type Mlenv.empty l in
(* Decomposing the top level lambdas of [body]. *)
let rels,c = decomp_lams_eta_n (List.length s) env body typ in
(* The lambdas names. *)
let ids = List.map (fun (n,_) -> id_of_name n) rels in
(* The according Coq environment. *)
let env = push_rels_assum rels env in
(* The real extraction: *)
let e = extract_term env mle t' c [] in
(* Expunging term and type from dummy lambdas. *)
term_expunge s (ids,e), type_expunge env t
let extract_fixpoint env vkn (fi,ti,ci) =
let n = Array.length vkn in
let types = Array.make n Tdummy
and terms = Array.make n MLdummy in
(* for replacing recursive calls [Rel ..] by the corresponding [Const]: *)
let sub = List.rev_map mkConst (Array.to_list vkn) in
for i = 0 to n-1 do
if sort_of env ti.(i) <> InProp then begin
let e,t = extract_std_constant env vkn.(i) (substl sub ci.(i)) ti.(i) in
terms.(i) <- e;
types.(i) <- t;
end
done;
Dfix (Array.map (fun kn -> ConstRef kn) vkn, terms, types)
let extract_constant env kn cb =
let r = ConstRef kn in
let typ = cb.const_type in
match cb.const_body with
| None -> (* A logical axiom is risky, an informative one is fatal. *)
(match flag_of_type env typ with
| (Info,TypeScheme) ->
if not (is_custom r) then warning_info_ax r;
let n = type_scheme_nb_args env typ in
let ids = iterate (fun l -> anonymous::l) n [] in
Dtype (r, ids, Taxiom)
| (Info,Default) ->
if not (is_custom r) then warning_info_ax r;
let t = snd (record_constant_type env kn (Some typ)) in
Dterm (r, MLaxiom, type_expunge env t)
| (Logic,TypeScheme) -> warning_log_ax r; Dtype (r, [], Tdummy)
| (Logic,Default) -> warning_log_ax r; Dterm (r, MLdummy, Tdummy))
| Some body ->
(match flag_of_type env typ with
| (Logic, Default) -> Dterm (r, MLdummy, Tdummy)
| (Logic, TypeScheme) -> Dtype (r, [], Tdummy)
| (Info, Default) ->
let e,t = extract_std_constant env kn (force body) typ in
Dterm (r,e,t)
| (Info, TypeScheme) ->
let s,vl = type_sign_vl env typ in
let db = db_from_sign s in
let t = extract_type_scheme env db (force body) (List.length s)
in Dtype (r, vl, t))
let extract_constant_spec env kn cb =
let r = ConstRef kn in
let typ = cb.const_type in
match flag_of_type env typ with
| (Logic, TypeScheme) -> Stype (r, [], Some Tdummy)
| (Logic, Default) -> Sval (r, Tdummy)
| (Info, TypeScheme) ->
let s,vl = type_sign_vl env typ in
(match cb.const_body with
| None -> Stype (r, vl, None)
| Some body ->
let db = db_from_sign s in
let t = extract_type_scheme env db (force body) (List.length s)
in Stype (r, vl, Some t))
| (Info, Default) ->
let t = snd (record_constant_type env kn (Some typ)) in
Sval (r, type_expunge env t)
let extract_inductive env kn =
let ind = extract_ind env kn in
add_recursors env kn;
let f l = List.filter (type_neq env Tdummy) l in
let packets =
Array.map (fun p -> { p with ip_types = Array.map f p.ip_types })
ind.ind_packets
in { ind with ind_packets = packets }
(*s From a global reference to a ML declaration. *)
let extract_declaration env r = match r with
| ConstRef kn -> extract_constant env kn (Environ.lookup_constant kn env)
| IndRef (kn,_) -> Dind (kn, extract_inductive env kn)
| ConstructRef ((kn,_),_) -> Dind (kn, extract_inductive env kn)
| VarRef kn -> assert false
(*s Without doing complete extraction, just guess what a constant would be. *)
type kind = Logical | Term | Type
let constant_kind env cb =
match flag_of_type env cb.const_type with
| (Logic,_) -> Logical
| (Info,TypeScheme) -> Type
| (Info,Default) -> Term
(*s Is a [ml_decl] logical ? *)
let logical_decl = function
| Dterm (_,MLdummy,Tdummy) -> true
| Dtype (_,[],Tdummy) -> true
| Dfix (_,av,tv) ->
(array_for_all ((=) MLdummy) av) && (array_for_all ((=) Tdummy) tv)
| Dind (_,i) -> array_for_all (fun ip -> ip.ip_logical) i.ind_packets
| _ -> false
(*s Is a [ml_spec] logical ? *)
let logical_spec = function
| Stype (_, [], Some Tdummy) -> true
| Sval (_,Tdummy) -> true
| Sind (_,i) -> array_for_all (fun ip -> ip.ip_logical) i.ind_packets
| _ -> false
|