1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
open Format
open Util
open Pp
open Term
open Tacmach
open Tactics
open Tacticals
open Names
open Nameops
open Termops
open Coqlib
open Hipattern
open Libnames
open Declarations
open Evarutil
let debug = ref false
(* 1. gappa syntax trees and output *)
module Constant = struct
open Bigint
type t = { mantissa : bigint; base : int; exp : bigint }
let create (b, m, e) =
{ mantissa = m; base = b; exp = e }
let of_int x =
{ mantissa = x; base = 1; exp = zero }
let print fmt x = match x.base with
| 1 -> fprintf fmt "%s" (to_string x.mantissa)
| 2 -> fprintf fmt "%sb%s" (to_string x.mantissa) (to_string x.exp)
| 10 -> fprintf fmt "%se%s" (to_string x.mantissa) (to_string x.exp)
| _ -> assert false
end
type binop = Bminus | Bplus | Bmult | Bdiv
type unop = Usqrt | Uabs | Uopp
type rounding_mode = string
type term =
| Tconst of Constant.t
| Tvar of string
| Tbinop of binop * term * term
| Tunop of unop * term
| Tround of rounding_mode * term
type pred =
| Pin of term * Constant.t * Constant.t
let rec print_term fmt = function
| Tconst c -> Constant.print fmt c
| Tvar s -> pp_print_string fmt s
| Tbinop (op, t1, t2) ->
let op = match op with
| Bplus -> "+" | Bminus -> "-" | Bmult -> "*" | Bdiv -> "/"
in
fprintf fmt "(%a %s %a)" print_term t1 op print_term t2
| Tunop (Uabs, t) ->
fprintf fmt "|%a|" print_term t
| Tunop (Uopp | Usqrt as op, t) ->
let s = match op with
| Uopp -> "-" | Usqrt -> "sqrt" | _ -> assert false
in
fprintf fmt "(%s(%a))" s print_term t
| Tround (m, t) ->
fprintf fmt "(%s(%a))" m print_term t
let print_pred fmt = function
| Pin (t, c1, c2) ->
fprintf fmt "%a in [%a, %a]"
print_term t Constant.print c1 Constant.print c2
let temp_file f = if !debug then f else Filename.temp_file f ".v"
let remove_file f = if not !debug then try Sys.remove f with _ -> ()
let read_gappa_proof f =
let buf = Buffer.create 1024 in
Buffer.add_char buf '(';
let cin = open_in f in
let rec skip_space () =
let c = input_char cin in if c = ' ' then skip_space () else c
in
while input_char cin <> '=' do () done;
try
while true do
let c = skip_space () in
if c = ':' then raise Exit;
Buffer.add_char buf c;
let s = input_line cin in
Buffer.add_string buf s;
Buffer.add_char buf '\n';
done;
assert false
with Exit ->
close_in cin;
remove_file f;
Buffer.add_char buf ')';
Buffer.contents buf
exception GappaFailed
exception GappaProofFailed
let patch_gappa_proof fin fout =
let cin = open_in fin in
let cout = open_out fout in
let fmt = formatter_of_out_channel cout in
let last = ref "" in
let defs = ref "" in
try
while true do
let s = input_line cin in
if s = "Qed." then
fprintf fmt "Defined.@\n"
else begin
begin
try Scanf.sscanf s "Lemma %s "
(fun n -> defs := n ^ " " ^ !defs; last := n)
with Scanf.Scan_failure _ ->
try Scanf.sscanf s "Definition %s "
(fun n -> defs := n ^ " " ^ !defs)
with Scanf.Scan_failure _ ->
()
end;
fprintf fmt "%s@\n" s
end
done
with End_of_file ->
close_in cin;
fprintf fmt "Definition proof := Eval cbv delta [%s] in %s.@." !defs !last;
close_out cout
let call_gappa hl p =
let gappa_in = temp_file "gappa_input" in
let c = open_out gappa_in in
let fmt = formatter_of_out_channel c in
fprintf fmt "@[{ ";
List.iter (fun h -> fprintf fmt "%a ->@ " print_pred h) hl;
fprintf fmt "%a }@]@." print_pred p;
close_out c;
let gappa_out = temp_file "gappa_output" in
let cmd = sprintf "gappa -Bcoq < %s > %s 2> /dev/null" gappa_in gappa_out in
let out = Sys.command cmd in
if out <> 0 then raise GappaFailed;
remove_file gappa_in;
let gappa_out2 = temp_file "gappa2" in
patch_gappa_proof gappa_out gappa_out2;
remove_file gappa_out;
let cmd = sprintf "%s/coqc %s" Coq_config.bindir gappa_out2 in
let out = Sys.command cmd in
if out <> 0 then raise GappaProofFailed;
let gappa_out3 = temp_file "gappa3" in
let c = open_out gappa_out3 in
let gappa2 = Filename.chop_suffix (Filename.basename gappa_out2) ".v" in
Printf.fprintf c
"Require \"%s\". Set Printing Depth 9999999. Print %s.proof."
(Filename.chop_suffix gappa_out2 ".v") gappa2;
close_out c;
let lambda = temp_file "gappa_lambda" in
let cmd = sprintf "%s/coqc %s > %s" Coq_config.bindir gappa_out3 lambda in
let out = Sys.command cmd in
if out <> 0 then raise GappaProofFailed;
remove_file gappa_out2; remove_file gappa_out3;
remove_file (gappa_out2 ^ "o"); remove_file (gappa_out3 ^ "o");
read_gappa_proof lambda
(* 2. coq -> gappa translation *)
exception NotGappa
let logic_dir = ["Coq";"Logic";"Decidable"]
let coq_modules =
init_modules @ [logic_dir] @ arith_modules @ zarith_base_modules
@ [["Coq"; "ZArith"; "BinInt"];
["Coq"; "Reals"; "Rdefinitions"];
["Coq"; "Reals"; "Raxioms";];
["Coq"; "Reals"; "Rbasic_fun";];
["Coq"; "Reals"; "R_sqrt";];
["Coq"; "Reals"; "Rfunctions";];
["Gappa"; "Gappa_tactic";];
["Gappa"; "Gappa_fixed";];
["Gappa"; "Gappa_float";];
["Gappa"; "Gappa_round_def";];
["Gappa"; "Gappa_pred_bnd";];
["Gappa"; "Gappa_definitions";];
]
let constant = gen_constant_in_modules "gappa" coq_modules
let coq_refl_equal = lazy (constant "refl_equal")
let coq_Rle = lazy (constant "Rle")
let coq_R = lazy (constant "R")
(*
let coq_Rplus = lazy (constant "Rplus")
let coq_Rminus = lazy (constant "Rminus")
let coq_Rmult = lazy (constant "Rmult")
let coq_Rdiv = lazy (constant "Rdiv")
let coq_powerRZ = lazy (constant "powerRZ")
let coq_R1 = lazy (constant "R1")
let coq_Ropp = lazy (constant "Ropp")
let coq_Rabs = lazy (constant "Rabs")
let coq_sqrt = lazy (constant "sqrt")
*)
let coq_convert = lazy (constant "convert")
let coq_reUnknown = lazy (constant "reUnknown")
let coq_reFloat2 = lazy (constant "reFloat2")
let coq_reFloat10 = lazy (constant "reFloat10")
let coq_reInteger = lazy (constant "reInteger")
let coq_reBinary = lazy (constant "reBinary")
let coq_reUnary = lazy (constant "reUnary")
let coq_reRound = lazy (constant "reRound")
let coq_roundDN = lazy (constant "roundDN")
let coq_roundUP = lazy (constant "roundUP")
let coq_roundNE = lazy (constant "roundNE")
let coq_roundZR = lazy (constant "roundZR")
let coq_rounding_fixed = lazy (constant "rounding_fixed")
let coq_rounding_float = lazy (constant "rounding_float")
let coq_boAdd = lazy (constant "boAdd")
let coq_boSub = lazy (constant "boSub")
let coq_boMul = lazy (constant "boMul")
let coq_boDiv = lazy (constant "boDiv")
let coq_uoAbs = lazy (constant "uoAbs")
let coq_uoNeg = lazy (constant "uoNeg")
let coq_uoSqrt = lazy (constant "uoSqrt")
let coq_subset = lazy (constant "subset")
let coq_makepairF = lazy (constant "makepairF")
let coq_true = lazy (constant "true")
let coq_false = lazy (constant "false")
let coq_Z0 = lazy (constant "Z0")
let coq_Zpos = lazy (constant "Zpos")
let coq_Zneg = lazy (constant "Zneg")
let coq_xH = lazy (constant "xH")
let coq_xI = lazy (constant "xI")
let coq_xO = lazy (constant "xO")
let coq_IZR = lazy (constant "IZR")
(* translates a closed Coq term p:positive into a FOL term of type int *)
let rec tr_positive p = match kind_of_term p with
| Term.Construct _ when p = Lazy.force coq_xH ->
1
| Term.App (f, [|a|]) when f = Lazy.force coq_xI ->
2 * (tr_positive a) + 1
| Term.App (f, [|a|]) when f = Lazy.force coq_xO ->
2 * (tr_positive a)
| Term.Cast (p, _, _) ->
tr_positive p
| _ ->
raise NotGappa
(* translates a closed Coq term t:Z into a term of type int *)
let rec tr_arith_constant t = match kind_of_term t with
| Term.Construct _ when t = Lazy.force coq_Z0 -> 0
| Term.App (f, [|a|]) when f = Lazy.force coq_Zpos -> tr_positive a
| Term.App (f, [|a|]) when f = Lazy.force coq_Zneg -> - (tr_positive a)
| Term.Cast (t, _, _) -> tr_arith_constant t
| _ -> raise NotGappa
(* translates a closed Coq term p:positive into a FOL term of type bigint *)
let rec tr_bigpositive p = match kind_of_term p with
| Term.Construct _ when p = Lazy.force coq_xH ->
Bigint.one
| Term.App (f, [|a|]) when f = Lazy.force coq_xI ->
Bigint.add_1 (Bigint.mult_2 (tr_bigpositive a))
| Term.App (f, [|a|]) when f = Lazy.force coq_xO ->
(Bigint.mult_2 (tr_bigpositive a))
| Term.Cast (p, _, _) ->
tr_bigpositive p
| _ ->
raise NotGappa
(* translates a closed Coq term t:Z into a term of type bigint *)
let rec tr_arith_bigconstant t = match kind_of_term t with
| Term.Construct _ when t = Lazy.force coq_Z0 -> Bigint.zero
| Term.App (f, [|a|]) when f = Lazy.force coq_Zpos -> tr_bigpositive a
| Term.App (f, [|a|]) when f = Lazy.force coq_Zneg ->
Bigint.neg (tr_bigpositive a)
| Term.Cast (t, _, _) -> tr_arith_bigconstant t
| _ -> raise NotGappa
let decomp c =
let c, args = decompose_app c in
kind_of_term c, args
let tr_bool c = match decompose_app c with
| c, [] when c = Lazy.force coq_true -> true
| c, [] when c = Lazy.force coq_false -> false
| _ -> raise NotGappa
let tr_float b m e =
(b, tr_arith_bigconstant m, tr_arith_bigconstant e)
let tr_binop c = match decompose_app c with
| c, [] when c = Lazy.force coq_boAdd -> Bplus
| c, [] when c = Lazy.force coq_boSub -> Bminus
| c, [] when c = Lazy.force coq_boMul -> Bmult
| c, [] when c = Lazy.force coq_boDiv -> Bdiv
| _ -> assert false
let tr_unop c = match decompose_app c with
| c, [] when c = Lazy.force coq_uoNeg -> Uopp
| c, [] when c = Lazy.force coq_uoSqrt -> Usqrt
| c, [] when c = Lazy.force coq_uoAbs -> Uabs
| _ -> raise NotGappa
let tr_var c = match decomp c with
| Var x, [] -> string_of_id x
| _ -> assert false
let tr_mode c = match decompose_app c with
| c, [] when c = Lazy.force coq_roundDN -> "dn"
| c, [] when c = Lazy.force coq_roundNE -> "ne"
| c, [] when c = Lazy.force coq_roundUP -> "up"
| c, [] when c = Lazy.force coq_roundZR -> "zr"
| _ -> raise NotGappa
let tr_rounding_mode c = match decompose_app c with
| c, [a;b] when c = Lazy.force coq_rounding_fixed ->
let a = tr_mode a in
let b = tr_arith_constant b in
sprintf "fixed<%d,%s>" b a
| c, [a;p;e] when c = Lazy.force coq_rounding_float ->
let a = tr_mode a in
let p = tr_positive p in
let e = tr_arith_constant e in
sprintf "float<%d,%d,%s>" p (-e) a
| _ ->
raise NotGappa
(* REexpr -> term *)
let rec tr_term c0 =
let c, args = decompose_app c0 in
match kind_of_term c, args with
| _, [a] when c = Lazy.force coq_reUnknown ->
Tvar (tr_var a)
| _, [a; b] when c = Lazy.force coq_reFloat2 ->
Tconst (Constant.create (tr_float 2 a b))
| _, [a; b] when c = Lazy.force coq_reFloat10 ->
Tconst (Constant.create (tr_float 10 a b))
| _, [a] when c = Lazy.force coq_reInteger ->
Tconst (Constant.create (1, tr_arith_bigconstant a, Bigint.zero))
| _, [op;a;b] when c = Lazy.force coq_reBinary ->
Tbinop (tr_binop op, tr_term a, tr_term b)
| _, [op;a] when c = Lazy.force coq_reUnary ->
Tunop (tr_unop op, tr_term a)
| _, [op;a] when c = Lazy.force coq_reRound ->
Tround (tr_rounding_mode op, tr_term a)
| _ ->
msgnl (str "tr_term: " ++ Printer.pr_constr c0);
assert false
let tr_rle c =
let c, args = decompose_app c in
match kind_of_term c, args with
| _, [a;b] when c = Lazy.force coq_Rle ->
begin match decompose_app a, decompose_app b with
| (ac, [at]), (bc, [bt])
when ac = Lazy.force coq_convert && bc = Lazy.force coq_convert ->
at, bt
| _ ->
raise NotGappa
end
| _ ->
raise NotGappa
let tr_pred c =
let c, args = decompose_app c in
match kind_of_term c, args with
| _, [a;b] when c = build_coq_and () ->
begin match tr_rle a, tr_rle b with
| (c1, t1), (t2, c2) when t1 = t2 ->
begin match tr_term c1, tr_term c2 with
| Tconst c1, Tconst c2 ->
Pin (tr_term t1, c1, c2)
| _ ->
raise NotGappa
end
| _ ->
raise NotGappa
end
| _ ->
raise NotGappa
let is_R c = match decompose_app c with
| c, [] when c = Lazy.force coq_R -> true
| _ -> false
let tr_hyps =
List.fold_left
(fun acc (_,h) -> try tr_pred h :: acc with NotGappa -> acc) []
let constr_of_string gl s =
let parse_constr = Pcoq.parse_string Pcoq.Constr.constr in
Constrintern.interp_constr (project gl) (pf_env gl) (parse_constr s)
let var_name = function
| Name id ->
let s = string_of_id id in
let s = String.sub s 1 (String.length s - 1) in
mkVar (id_of_string s)
| Anonymous ->
assert false
let build_proof_term c0 =
let bl,c = decompose_lam c0 in
List.fold_right
(fun (x,t) pf ->
mkApp (pf, [| if is_R t then var_name x else mk_new_meta () |]))
bl c0
let gappa_internal gl =
try
let c = tr_pred (pf_concl gl) in
let s = call_gappa (tr_hyps (pf_hyps_types gl)) c in
let pf = constr_of_string gl s in
let pf = build_proof_term pf in
Tacticals.tclTHEN (Tacmach.refine_no_check pf) Tactics.assumption gl
with
| NotGappa -> error "not a gappa goal"
| GappaFailed -> error "gappa failed"
| GappaProofFailed -> error "incorrect gappa proof term"
let gappa_prepare =
let id = Ident (dummy_loc, id_of_string "gappa_prepare") in
lazy (Tacinterp.interp (Tacexpr.TacArg (Tacexpr.Reference id)))
let gappa gl =
Coqlib.check_required_library ["Gappa"; "Gappa_tactic"];
Tacticals.tclTHEN (Lazy.force gappa_prepare) gappa_internal gl
(*
Local Variables:
compile-command: "make -C ../.. bin/coqc.opt bin/coqide.opt"
End:
*)
|