1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
(* $Id: pred.ml,v 1.6.14.1 2004/07/16 19:30:05 herbelin Exp $ *)
open Pp
open Past
open Pmisc
let rec cc_subst subst = function
| CC_var id as c ->
(try CC_expr (List.assoc id subst) with Not_found -> c)
| CC_letin (b,ty,bl,c1,c2) ->
CC_letin (b, real_subst_in_constr subst ty, cc_subst_binders subst bl,
cc_subst subst c1, cc_subst (cc_cross_binders subst bl) c2)
| CC_lam (bl, c) ->
CC_lam (cc_subst_binders subst bl,
cc_subst (cc_cross_binders subst bl) c)
| CC_app (c, cl) ->
CC_app (cc_subst subst c, List.map (cc_subst subst) cl)
| CC_tuple (b, tl, cl) ->
CC_tuple (b, List.map (real_subst_in_constr subst) tl,
List.map (cc_subst subst) cl)
| CC_case (ty, c, cl) ->
CC_case (real_subst_in_constr subst ty, cc_subst subst c,
List.map (cc_subst subst) cl)
| CC_expr c ->
CC_expr (real_subst_in_constr subst c)
| CC_hole ty ->
CC_hole (real_subst_in_constr subst ty)
and cc_subst_binders subst = List.map (cc_subst_binder subst)
and cc_subst_binder subst = function
| id,CC_typed_binder c -> id,CC_typed_binder (real_subst_in_constr subst c)
| b -> b
and cc_cross_binders subst = function
| [] -> subst
| (id,_) :: bl -> cc_cross_binders (List.remove_assoc id subst) bl
(* here we only perform eta-reductions on programs to eliminate
* redexes of the kind
*
* let (x1,...,xn) = e in (x1,...,xn) --> e
*
*)
let is_eta_redex bl al =
try
List.for_all2
(fun (id,_) t -> match t with CC_var id' -> id=id' | _ -> false)
bl al
with
Invalid_argument("List.for_all2") -> false
let rec red = function
| CC_letin (_, _, [id,_], CC_expr c1, e2) ->
red (cc_subst [id,c1] e2)
| CC_letin (dep, ty, bl, e1, e2) ->
begin match red e2 with
| CC_tuple (false,tl,al) ->
if is_eta_redex bl al then
red e1
else
CC_letin (dep, ty, bl, red e1,
CC_tuple (false,tl,List.map red al))
| e -> CC_letin (dep, ty, bl, red e1, e)
end
| CC_lam (bl, e) ->
CC_lam (bl, red e)
| CC_app (e, al) ->
CC_app (red e, List.map red al)
| CC_case (ty, e1, el) ->
CC_case (ty, red e1, List.map red el)
| CC_tuple (dep, tl, al) ->
CC_tuple (dep, tl, List.map red al)
| e -> e
(* How to reduce uncomplete proof terms when they have become constr *)
open Term
open Reductionops
(* Il ne faut pas reduire de redexe (beta/iota) qui impliquerait
* la substitution d'une métavariable.
*
* On commence par rendre toutes les applications binaire (strong bin_app)
* puis on applique la reduction spéciale programmes définie dans
* typing/reduction *)
(*i
let bin_app = function
| DOPN(AppL,v) as c ->
(match Array.length v with
| 1 -> v.(0)
| 2 -> c
| n ->
let f = DOPN(AppL,Array.sub v 0 (pred n)) in
DOPN(AppL,[|f;v.(pred n)|]))
| c -> c
i*)
let red_cci c =
(*i let c = strong bin_app c in i*)
strong whd_programs (Global.env ()) Evd.empty c
|