1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
(* $Id: pmonad.ml,v 1.6.16.1 2004/07/16 19:30:02 herbelin Exp $ *)
open Util
open Names
open Term
open Termast
open Pmisc
open Putil
open Ptype
open Past
open Prename
open Penv
open Pcic
open Peffect
(* [product ren [y1,z1;...;yk,zk] q] constructs
* the (possibly dependent) tuple type
*
* z1 x ... x zk if no post-condition
* or \exists. y1:z1. ... yk:zk. (Q x1 ... xn) otherwise
*
* where the xi are given by the renaming [ren].
*)
let product_name = function
| 2 -> "prod"
| n -> check_product_n n; Printf.sprintf "tuple_%d" n
let dep_product_name = function
| 1 -> "sig"
| n -> check_dep_product_n n; Printf.sprintf "sig_%d" n
let product ren env before lo = function
| None -> (* non dependent case *)
begin match lo with
| [_,v] -> v
| _ ->
let s = product_name (List.length lo) in
Term.applist (constant s, List.map snd lo)
end
| Some q -> (* dependent case *)
let s = dep_product_name (List.length lo) in
let a' = apply_post ren env before q in
Term.applist (constant s, (List.map snd lo) @ [a'.a_value])
(* [arrow ren v pl] abstracts the term v over the pre-condition if any
* i.e. computes
*
* (P1 x1 ... xn) -> ... -> (Pk x1 ... xn) -> v
*
* where the xi are given by the renaming [ren].
*)
let arrow ren env v pl =
List.fold_left
(fun t p ->
if p.p_assert then t else Term.mkArrow (apply_pre ren env p).p_value t)
v pl
(* [abstract_post ren env (e,q) (res,v)] abstract a post-condition q
* over the write-variables of e *)
let rec abstract_post ren env (e,q) =
let after_id id = id_of_string ((string_of_id id) ^ "'") in
let (_,go) = Peffect.get_repr e in
let al = List.map (fun id -> (id,after_id id)) go in
let q = option_app (named_app (subst_in_constr al)) q in
let tgo = List.map (fun (id,aid) -> (aid, trad_type_in_env ren env id)) al in
option_app (named_app (abstract tgo)) q
(* Translation of effects types in cic types.
*
* [trad_ml_type_v] and [trad_ml_type_c] translate types with effects
* into cic types.
*)
and prod ren env g =
List.map
(fun id -> (current_var ren id, trad_type_in_env ren env id))
g
and input ren env e =
let i,_ = Peffect.get_repr e in
prod ren env i
and output ren env ((id,v),e) =
let tv = trad_ml_type_v ren env v in
let _,o = Peffect.get_repr e in
(prod ren env o) @ [id,tv]
and input_output ren env c =
let ((res,v),e,_,_) = c in
input ren env e, output ren env ((res,v),e)
(* The function t -> \barre{t} on V and C. *)
and trad_ml_type_c ren env c =
let ((res,v),e,p,q) = c in
let q = abstract_post ren env (e,q) in
let lo = output ren env ((res,v),e) in
let ty = product ren env (current_date ren) lo q in
let ty = arrow ren env ty p in
let li = input ren env e in
n_mkNamedProd ty li
and trad_ml_type_v ren env = function
| Ref _ | Array _ -> invalid_arg "Monad.trad_ml_type_v"
| Arrow (bl, c) ->
let bl',ren',env' =
List.fold_left
(fun (bl,ren,env) b -> match b with
| (id,BindType ((Ref _ | Array _) as v)) ->
let env' = add (id,v) env in
let ren' = initial_renaming env' in
(bl,ren',env')
| (id,BindType v) ->
let tt = trad_ml_type_v ren env v in
let env' = add (id,v) env in
let ren' = initial_renaming env' in
(id,tt)::bl,ren',env'
| (id, BindSet) ->
(id,mkSet) :: bl,ren,env
| _ -> failwith "Monad: trad_ml_type_v: not yet implemented"
)
([],ren,env) bl
in
n_mkNamedProd (trad_ml_type_c ren' env' c) bl'
| TypePure c ->
(apply_pre ren env (anonymous_pre false c)).p_value
and trad_imp_type ren env = function
| Ref v -> trad_ml_type_v ren env v
| Array (c,v) -> Term.applist (constant "array",
[c; trad_ml_type_v ren env v])
| _ -> invalid_arg "Monad.trad_imp_type"
and trad_type_in_env ren env id =
let v = type_in_env env id in trad_imp_type ren env v
(* bindings *)
let binding_of_alist ren env al =
List.map
(fun (id,id') -> (id', CC_typed_binder (trad_type_in_env ren env id)))
al
(* [make_abs bl t p] abstracts t w.r.t binding list bl., that is
* [x1:t1]...[xn:tn]t. Returns t if the binding is empty. *)
let make_abs bl t = match bl with
| [] -> t
| _ -> CC_lam (bl, t)
(* [result_tuple ren before env (res,v) (ef,q)] constructs the tuple
*
* (y1,...,yn,res,?::(q/ren y1 ... yn res))
*
* where the yi are the values of the output of ef.
* if there is no yi and no post-condition, it is simplified in res itself.
*)
let simple_constr_of_prog = function
| CC_expr c -> c
| CC_var id -> mkVar id
| _ -> assert false
let make_tuple l q ren env before = match l with
| [e,_] when q = None ->
e
| _ ->
let tl = List.map snd l in
let dep,h,th = match q with
| None -> false,[],[]
| Some c ->
let args = List.map (fun (e,_) -> simple_constr_of_prog e) l in
let c = apply_post ren env before c in
true,
[ CC_hole (Term.applist (c.a_value, args)) ], (* hole *)
[ c.a_value ] (* type of the hole *)
in
CC_tuple (dep, tl @ th, (List.map fst l) @ h)
let result_tuple ren before env (res,v) (ef,q) =
let ids = get_writes ef in
let lo =
(List.map (fun id ->
let id' = current_var ren id in
CC_var id', trad_type_in_env ren env id) ids)
@ [res,v]
in
let q = abstract_post ren env (ef,q) in
make_tuple lo q ren env before,
product ren env before lo q
(* [make_let_in ren env fe p (vo,q) (res,v) t] constructs the term
[ let h1 = ?:P1 in ... let hn = ?:Pm in ]
let y1,y2,...,yn, res [,q] = fe in
t
vo=[_,y1;...;_,ym] are list of renamings.
v is the type of res
*)
let let_in_pre ty p t =
let h = p.p_value in
CC_letin (false, ty, [pre_name p.p_name,CC_typed_binder h], CC_hole h, t)
let multiple_let_in_pre ty hl t =
List.fold_left (fun t h -> let_in_pre ty h t) t hl
let make_let_in ren env fe p (vo,q) (res,tyres) (t,ty) =
let b = [res, CC_typed_binder tyres] in
let b',dep = match q with
| None -> [],false
| Some q -> [post_name q.a_name, CC_untyped_binder],true
in
let bl = (binding_of_alist ren env vo) @ b @ b' in
let tyapp =
let n = succ (List.length vo) in
let name = match q with None -> product_name n | _ -> dep_product_name n in
constant name
in
let t = CC_letin (dep, ty, bl, fe, t) in
multiple_let_in_pre ty (List.map (apply_pre ren env) p) t
(* [abs_pre ren env (t,ty) pl] abstracts a term t with respect to the
* list of pre-conditions [pl]. Some of them are real pre-conditions
* and others are assertions, according to the boolean field p_assert,
* so we construct the term
* [h1:P1]...[hn:Pn]let h'1 = ?:P'1 in ... let H'm = ?:P'm in t
*)
let abs_pre ren env (t,ty) pl =
List.fold_left
(fun t p ->
if p.p_assert then
let_in_pre ty (apply_pre ren env p) t
else
let h = pre_name p.p_name in
CC_lam ([h,CC_typed_binder (apply_pre ren env p).p_value],t))
t pl
(* [make_block ren env finish bl] builds the translation of a block
* finish is the function that is applied to the result at the end of the
* block. *)
let make_block ren env finish bl =
let rec rec_block ren result = function
| [] ->
finish ren result
| (Assert c) :: block ->
let t,ty = rec_block ren result block in
let c = apply_assert ren env c in
let p = { p_assert = true; p_name = c.a_name; p_value = c.a_value } in
let_in_pre ty p t, ty
| (Label s) :: block ->
let ren' = push_date ren s in
rec_block ren' result block
| (Statement (te,info)) :: block ->
let (_,tye),efe,pe,qe = info in
let w = get_writes efe in
let ren' = next ren w in
let id = result_id in
let tye = trad_ml_type_v ren env tye in
let t = rec_block ren' (Some (id,tye)) block in
make_let_in ren env te pe (current_vars ren' w,qe) (id,tye) t,
snd t
in
let t,_ = rec_block ren None bl in
t
(* [make_app env ren args ren' (tf,cf) (cb,s,capp) c]
* constructs the application of [tf] to [args].
* capp is the effect of application, after substitution (s) and cb before
*)
let eq ty e1 e2 =
Term.applist (constant "eq", [ty; e1; e2])
let lt r e1 e2 =
Term.applist (r, [e1; e2])
let is_recursive env = function
| CC_var x ->
(try let _ = find_recursion x env in true with Not_found -> false)
| _ -> false
let if_recursion env f = function
| CC_var x ->
(try let v = find_recursion x env in (f v x) with Not_found -> [])
| _ -> []
let dec_phi ren env s svi =
if_recursion env
(fun (phi0,(cphi,r,_)) f ->
let phi = subst_in_constr svi (subst_in_constr s cphi) in
let phi = (apply_pre ren env (anonymous_pre true phi)).p_value in
[CC_expr phi; CC_hole (lt r phi (mkVar phi0))])
let eq_phi ren env s svi =
if_recursion env
(fun (phi0,(cphi,_,a)) f ->
let phi = subst_in_constr svi (subst_in_constr s cphi) in
let phi = (apply_pre ren env (anonymous_pre true phi)).p_value in
[CC_hole (eq a phi phi)])
let is_ref_binder = function
| (_,BindType (Ref _ | Array _)) -> true
| _ -> false
let make_app env ren args ren' (tf,cf) ((bl,cb),s,capp) c =
let ((_,tvf),ef,pf,qf) = cf in
let (_,eapp,papp,qapp) = capp in
let ((_,v),e,p,q) = c in
let bl = List.filter (fun b -> not (is_ref_binder b)) bl in
let recur = is_recursive env tf in
let before = current_date ren in
let ren'' = next ren' (get_writes ef) in
let ren''' = next ren'' (get_writes eapp) in
let res = result_id in
let vi,svi =
let ids = List.map fst bl in
let s = fresh (avoid ren ids) ids in
List.map snd s, s
in
let tyres = subst_in_constr svi (trad_ml_type_v ren env v) in
let t,ty = result_tuple ren''' before env (CC_var res, tyres) (e,q) in
let res_f = id_of_string "vf" in
let inf,outf =
let i,o = let _,e,_,_ = cb in get_reads e, get_writes e in
let apply_s = List.map (fun id -> try List.assoc id s with _ -> id) in
apply_s i, apply_s o
in
let fe =
let xi = List.rev (List.map snd (current_vars ren'' inf)) in
let holes = List.map (fun x -> (apply_pre ren'' env x).p_value)
(List.map (pre_app (subst_in_constr svi)) papp) in
CC_app ((if recur then tf else CC_var res_f),
(dec_phi ren'' env s svi tf)
@(List.map (fun id -> CC_var id) (vi @ xi))
@(eq_phi ren'' env s svi tf)
@(List.map (fun c -> CC_hole c) holes))
in
let qapp' = option_app (named_app (subst_in_constr svi)) qapp in
let t =
make_let_in ren'' env fe [] (current_vars ren''' outf,qapp')
(res,tyres) (t,ty)
in
let t =
if recur then
t
else
make_let_in ren' env tf pf
(current_vars ren'' (get_writes ef),qf)
(res_f,trad_ml_type_v ren env tvf) (t,ty)
in
let rec eval_args ren = function
| [] -> t
| (vx,(ta,((_,tva),ea,pa,qa)))::args ->
let w = get_writes ea in
let ren' = next ren w in
let t' = eval_args ren' args in
make_let_in ren env ta pa (current_vars ren' (get_writes ea),qa)
(vx,trad_ml_type_v ren env tva) (t',ty)
in
eval_args ren (List.combine vi args)
(* [make_if ren env (tb,cb) ren' (t1,c1) (t2,c2)]
* constructs the term corresponding to a if expression, i.e
*
* [p] let o1, b [,q1] = m1 [?::p1] in
* Cases b of
* R => let o2, v2 [,q2] = t1 [?::p2] in
* (proj (o1,o2)), v2 [,?::q]
* | S => let o2, v2 [,q2] = t2 [?::p2] in
* (proj (o1,o2)), v2 [,?::q]
*)
let make_if_case ren env ty (b,qb) (br1,br2) =
let id_b,ty',ty1,ty2 = match qb with
| Some q ->
let q = apply_post ren env (current_date ren) q in
let (name,t1,t2) = Term.destLambda q.a_value in
q.a_name,
Term.mkLambda (name, t1, mkArrow t2 ty),
Term.mkApp (q.a_value, [| coq_true |]),
Term.mkApp (q.a_value, [| coq_false |])
| None -> assert false
in
let n = test_name Anonymous in
CC_app (CC_case (ty', b, [CC_lam ([n,CC_typed_binder ty1], br1);
CC_lam ([n,CC_typed_binder ty2], br2)]),
[CC_var (post_name id_b)])
let make_if ren env (tb,cb) ren' (t1,c1) (t2,c2) c =
let ((_,tvb),eb,pb,qb) = cb in
let ((_,tv1),e1,p1,q1) = c1 in
let ((_,tv2),e2,p2,q2) = c2 in
let ((_,t),e,p,q) = c in
let wb = get_writes eb in
let resb = id_of_string "resultb" in
let res = result_id in
let tyb = trad_ml_type_v ren' env tvb in
let tt = trad_ml_type_v ren env t in
(* une branche de if *)
let branch (tv_br,e_br,p_br,q_br) f_br =
let w_br = get_writes e_br in
let ren'' = next ren' w_br in
let t,ty = result_tuple ren'' (current_date ren') env
(CC_var res,tt) (e,q) in
make_let_in ren' env f_br p_br (current_vars ren'' w_br,q_br)
(res,tt) (t,ty),
ty
in
let t1,ty1 = branch c1 t1 in
let t2,ty2 = branch c2 t2 in
let ty = ty1 in
let qb = force_bool_name qb in
let t = make_if_case ren env ty (CC_var resb,qb) (t1,t2) in
make_let_in ren env tb pb (current_vars ren' wb,qb) (resb,tyb) (t,ty)
(* [make_while ren env (cphi,r,a) (tb,cb) (te,ce) c]
* constructs the term corresponding to the while, i.e.
*
* [h:(I x)](well_founded_induction
* A R ?::(well_founded A R)
* [Phi:A] (x) Phi=phi(x)->(I x)-> \exists x'.res.(I x')/\(S x')
* [Phi_0:A][w:(Phi:A)(Phi<Phi_0)-> ...]
* [x][eq:Phi_0=phi(x)][h:(I x)]
* Cases (b x) of
* (left HH) => (x,?::(IS x))
* | (right HH) => let x1,_,_ = (e x ?) in
* (w phi(x1) ? x1 ? ?)
* phi(x) x ? ?)
*)
let id_phi = id_of_string "phi"
let id_phi0 = id_of_string "phi0"
let make_body_while ren env phi_of a r id_phi0 id_w (tb,cb) tbl (i,c) =
let ((_,tvb),eb,pb,qb) = cb in
let (_,ef,_,is) = c in
let ren' = next ren (get_writes ef) in
let before = current_date ren in
let ty =
let is = abstract_post ren' env (ef,is) in
let _,lo = input_output ren env c in
product ren env before lo is
in
let resb = id_of_string "resultb" in
let tyb = trad_ml_type_v ren' env tvb in
let wb = get_writes eb in
(* première branche: le test est vrai => e;w *)
let t1 =
make_block ren' env
(fun ren'' result -> match result with
| Some (id,_) ->
let v = List.rev (current_vars ren'' (get_writes ef)) in
CC_app (CC_var id_w,
[CC_expr (phi_of ren'');
CC_hole (lt r (phi_of ren'') (mkVar id_phi0))]
@(List.map (fun (_,id) -> CC_var id) v)
@(CC_hole (eq a (phi_of ren'') (phi_of ren'')))
::(match i with
| None -> []
| Some c ->
[CC_hole (apply_assert ren'' env c).a_value])),
ty
| None -> failwith "a block should contain at least one statement")
tbl
in
(* deuxième branche: le test est faux => on sort de la boucle *)
let t2,_ =
result_tuple ren' before env
(CC_expr (constant "tt"),constant "unit") (ef,is)
in
let b_al = current_vars ren' (get_reads eb) in
let qb = force_bool_name qb in
let t = make_if_case ren' env ty (CC_var resb,qb) (t1,t2) in
let t =
make_let_in ren' env tb pb (current_vars ren' wb,qb) (resb,tyb) (t,ty)
in
let t =
let pl = List.map (pre_of_assert false) (list_of_some i) in
abs_pre ren' env (t,ty) pl
in
let t =
CC_lam ([var_name Anonymous,
CC_typed_binder (eq a (mkVar id_phi0) (phi_of ren'))],t)
in
let bl = binding_of_alist ren env (current_vars ren' (get_writes ef)) in
make_abs (List.rev bl) t
let make_while ren env (cphi,r,a) (tb,cb) tbl (i,c) =
let (_,ef,_,is) = c in
let phi_of ren = (apply_pre ren env (anonymous_pre true cphi)).p_value in
let wf_a_r = Term.applist (constant "well_founded", [a; r]) in
let before = current_date ren in
let ren' = next ren (get_writes ef) in
let al = current_vars ren' (get_writes ef) in
let v =
let _,lo = input_output ren env c in
let is = abstract_post ren' env (ef,is) in
match i with
| None -> product ren' env before lo is
| Some ci ->
Term.mkArrow (apply_assert ren' env ci).a_value
(product ren' env before lo is)
in
let v = Term.mkArrow (eq a (mkVar id_phi) (phi_of ren')) v in
let v =
n_mkNamedProd v
(List.map (fun (id,id') -> (id',trad_type_in_env ren env id)) al)
in
let tw =
Term.mkNamedProd id_phi a
(Term.mkArrow (lt r (mkVar id_phi) (mkVar id_phi0)) v)
in
let id_w = id_of_string "loop" in
let vars = List.rev (current_vars ren (get_writes ef)) in
let body =
make_body_while ren env phi_of a r id_phi0 id_w (tb,cb) tbl (i,c)
in
CC_app (CC_expr (constant "well_founded_induction"),
[CC_expr a; CC_expr r;
CC_hole wf_a_r;
CC_expr (Term.mkNamedLambda id_phi a v);
CC_lam ([id_phi0, CC_typed_binder a;
id_w, CC_typed_binder tw],
body);
CC_expr (phi_of ren)]
@(List.map (fun (_,id) -> CC_var id) vars)
@(CC_hole (eq a (phi_of ren) (phi_of ren)))
::(match i with
| None -> []
| Some c -> [CC_hole (apply_assert ren env c).a_value]))
(* [make_letrec ren env (phi0,(cphi,r,a)) bl (te,ce) c]
* constructs the term corresponding to the let rec i.e.
*
* [x][h:P(x)](well_founded_induction
* A R ?::(well_founded A R)
* [Phi:A] (bl) (x) Phi=phi(x)->(P x)-> \exists x'.res.(Q x x')
* [Phi_0:A][w:(Phi:A)(Phi<Phi_0)-> ...]
* [bl][x][eq:Phi_0=phi(x)][h:(P x)]te
* phi(x) bl x ? ?)
*)
let make_letrec ren env (id_phi0,(cphi,r,a)) idf bl (te,ce) c =
let (_,ef,p,q) = c in
let phi_of ren = (apply_pre ren env (anonymous_pre true cphi)).p_value in
let wf_a_r = Term.applist (constant "well_founded", [a; r]) in
let before = current_date ren in
let al = current_vars ren (get_reads ef) in
let v =
let _,lo = input_output ren env c in
let q = abstract_post ren env (ef,q) in
arrow ren env (product ren env (current_date ren) lo q) p
in
let v = Term.mkArrow (eq a (mkVar id_phi) (phi_of ren)) v in
let v =
n_mkNamedProd v
(List.map (fun (id,id') -> (id',trad_type_in_env ren env id)) al)
in
let v =
n_mkNamedProd v
(List.map (function (id,CC_typed_binder c) -> (id,c)
| _ -> assert false) (List.rev bl))
in
let tw =
Term.mkNamedProd id_phi a
(Term.mkArrow (lt r (mkVar id_phi) (mkVar id_phi0)) v)
in
let vars = List.rev (current_vars ren (get_reads ef)) in
let body =
let al = current_vars ren (get_reads ef) in
let bod = abs_pre ren env (te,v) p in
let bod = CC_lam ([var_name Anonymous,
CC_typed_binder (eq a (mkVar id_phi0) (phi_of ren))],
bod)
in
let bl' = binding_of_alist ren env al in
make_abs (bl@(List.rev bl')) bod
in
let t =
CC_app (CC_expr (constant "well_founded_induction"),
[CC_expr a; CC_expr r;
CC_hole wf_a_r;
CC_expr (Term.mkNamedLambda id_phi a v);
CC_lam ([id_phi0, CC_typed_binder a;
idf, CC_typed_binder tw],
body);
CC_expr (phi_of ren)]
@(List.map (fun (id,_) -> CC_var id) bl)
@(List.map (fun (_,id) -> CC_var id) vars)
@[CC_hole (eq a (phi_of ren) (phi_of ren))]
)
in
(* on abstrait juste par rapport aux variables de ef *)
let al = current_vars ren (get_reads ef) in
let bl = binding_of_alist ren env al in
make_abs (List.rev bl) t
(* [make_access env id c] Access in array id.
*
* Constructs [t:(array s T)](access_g s T t c ?::(lt c s)).
*)
let array_info ren env id =
let ty = type_in_env env id in
let size,v = dearray_type ty in
let ty_elem = trad_ml_type_v ren env v in
let ty_array = trad_imp_type ren env ty in
size,ty_elem,ty_array
let make_raw_access ren env (id,id') c =
let size,ty_elem,_ = array_info ren env id in
Term.applist (constant "access", [size; ty_elem; mkVar id'; c])
let make_pre_access ren env id c =
let size,_,_ = array_info ren env id in
conj (lt (constant "Zle") (constant "ZERO") c)
(lt (constant "Zlt") c size)
let make_raw_store ren env (id,id') c1 c2 =
let size,ty_elem,_ = array_info ren env id in
Term.applist (constant "store", [size; ty_elem; mkVar id'; c1; c2])
|