summaryrefslogtreecommitdiff
path: root/contrib/correctness/examples/fact_int.v
blob: f463ca806de3a46dd41a9e03ad20a4223bf9107f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)

(* $Id: fact_int.v 1577 2001-04-11 07:56:19Z filliatr $ *)

(* Proof of an imperative program computing the factorial (over type Z) *)

Require Correctness.
Require Omega.
Require ZArithRing.

(* We define the factorial as a relation... *)

Inductive fact : Z -> Z -> Prop :=
    fact_0 : (fact `0` `1`)
  | fact_S : (z,f:Z) (fact z f) -> (fact (Zs z) (Zmult (Zs z) f)).

(* ...and then we prove that it contains a function *)

Lemma fact_function : (z:Z) `0 <= z` -> (EX f:Z | (fact z f)).
Proof.
Intros.
Apply natlike_ind with P:=[z:Z](EX f:Z | (fact z f)).
Split with `1`.
Exact fact_0.

Intros.
Elim H1.
Intros.
Split with `(Zs x)*x0`.
Exact (fact_S x x0 H2).

Assumption.
Save.

(* This lemma should belong to the ZArith library *)

Lemma Z_mult_1 : (x,y:Z)`x>=1`->`y>=1`->`x*y>=1`.
Proof.
Intros.
Generalize H.
Apply natlike_ind with P:=[x:Z]`x >= 1`->`x*y >= 1`.
Omega.

Intros.
Simpl.
Elim (Z_le_lt_eq_dec `0` x0 H1).
Simpl.
Unfold Zs.
Replace `(x0+1)*y` with `x0*y+y`.
Generalize H2.
Generalize `x0*y`.
Intro.
Intros.
Omega.

Ring.

Intros.
Rewrite <- b.
Omega.

Omega.
Save.

(* (fact x f) implies x>=0 and f>=1 *)

Lemma fact_pos : (x,f:Z)(fact x f)-> `x>=0` /\ `f>=1`.
Proof.
Intros.
(Elim H; Auto).
Omega.

Intros.
(Split; Try Omega).
(Apply Z_mult_1; Try Omega).
Save.

(* (fact 0 x) implies x=1 *)

Lemma fact_0_1 : (x:Z)(fact `0` x) -> `x=1`.
Proof.
Intros.
Inversion H.
Reflexivity.

Elim (fact_pos z f H1).
Intros.
(Absurd `z >= 0`; Omega).
Save.


(* We define the loop invariant : y * x! = x0! *)

Inductive invariant [y,x,x0:Z] : Prop :=
  c_inv : (f,f0:Z)(fact x f)->(fact x0 f0)->(Zmult y f)=f0
       -> (invariant y x x0).

(* The following lemma is used to prove the preservation of the invariant *)

Lemma fact_rec : (x0,x,y:Z)`0 < x` ->
    (invariant y x x0) 
 -> (invariant `x*y` (Zpred x) x0).
Proof.
Intros x0 x y H H0.
Elim H0.
Intros.
Generalize H H0 H3.
Elim H1.
Intros.
Absurd `0 < 0`; Omega.

Intros.
Apply c_inv with f:=f1 f0:=f0.
Cut `z+1+-1 = z`. Intro eq_z. Rewrite <- eq_z in H4.
Assumption.

Omega.

Assumption.

Rewrite (Zmult_sym (Zs z) y).                     
Rewrite (Zmult_assoc_r y (Zs z) f1).
Auto.
Save.


(* This one is used to prove the proof obligation at the exit of the loop *)

Lemma invariant_0 : (x,y:Z)(invariant y `0` x)->(fact x y).
Proof.
Intros.
Elim H.
Intros.
Generalize (fact_0_1 f H0).
Intro.
Rewrite H3 in H2.
Simpl in H2.
Replace y with `y*1`.
Rewrite H2.
Assumption.

Omega.
Save.


(* At last we come to the proof itself *************************************)

(* we declare two variable x and y *)

Global Variable x : Z ref.
Global Variable y : Z ref.

(* and we give the annotated program *)

Correctness factorielle 
  { `0 <= x` }
  begin
    y := 1;
    while !x <> 0 do
      { invariant `0 <= x` /\ (invariant y x x@0) as Inv
        variant x for (Zwf ZERO) }
      y := (Zmult !x !y);
      x := (Zpred !x)
    done
  end
  { (fact x@0 y) }.
Proof.
Split.
(* decreasing *)
Unfold Zwf. Unfold Zpred. Omega.
(* preservation of the invariant *)
Split.
  Unfold Zpred; Omega.
  Cut `0 < x0`. Intro Hx0.
  Decompose [and] Inv.
  Exact (fact_rec x x0 y1 Hx0 H0).
  Omega.
(* entrance of the loop *)
Split; Auto.
Elim (fact_function x Pre1). Intros.
Apply c_inv with f:=x0 f0:=x0; Auto.
Omega.
(* exit of the loop *)
Decompose [and] Inv.
Rewrite H0 in H2.
Exact (invariant_0 x y1 H2).
Save.