1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
(* $Id: Tuples.v,v 1.2.2.1 2004/07/16 19:30:00 herbelin Exp $ *)
(* Tuples *)
Definition tuple_1 (X:Set) := X.
Definition tuple_2 := prod.
Definition Build_tuple_2 := pair.
Definition proj_2_1 := fst.
Definition proj_2_2 := snd.
Record tuple_3 (T1 T2 T3:Set) : Set :=
{proj_3_1 : T1; proj_3_2 : T2; proj_3_3 : T3}.
Record tuple_4 (T1 T2 T3 T4:Set) : Set :=
{proj_4_1 : T1; proj_4_2 : T2; proj_4_3 : T3; proj_4_4 : T4}.
Record tuple_5 (T1 T2 T3 T4 T5:Set) : Set :=
{proj_5_1 : T1; proj_5_2 : T2; proj_5_3 : T3; proj_5_4 : T4; proj_5_5 : T5}.
Record tuple_6 (T1 T2 T3 T4 T5 T6:Set) : Set :=
{proj_6_1 : T1;
proj_6_2 : T2;
proj_6_3 : T3;
proj_6_4 : T4;
proj_6_5 : T5;
proj_6_6 : T6}.
Record tuple_7 (T1 T2 T3 T4 T5 T6 T7:Set) : Set :=
{proj_7_1 : T1;
proj_7_2 : T2;
proj_7_3 : T3;
proj_7_4 : T4;
proj_7_5 : T5;
proj_7_6 : T6;
proj_7_7 : T7}.
(* Existentials *)
Definition sig_1 := sig.
Definition exist_1 := exist.
Inductive sig_2 (T1 T2:Set) (P:T1 -> T2 -> Prop) : Set :=
exist_2 : forall (x1:T1) (x2:T2), P x1 x2 -> sig_2 T1 T2 P.
Inductive sig_3 (T1 T2 T3:Set) (P:T1 -> T2 -> T3 -> Prop) : Set :=
exist_3 : forall (x1:T1) (x2:T2) (x3:T3), P x1 x2 x3 -> sig_3 T1 T2 T3 P.
Inductive sig_4 (T1 T2 T3 T4:Set) (P:T1 -> T2 -> T3 -> T4 -> Prop) : Set :=
exist_4 :
forall (x1:T1) (x2:T2) (x3:T3) (x4:T4),
P x1 x2 x3 x4 -> sig_4 T1 T2 T3 T4 P.
Inductive sig_5 (T1 T2 T3 T4 T5:Set) (P:T1 -> T2 -> T3 -> T4 -> T5 -> Prop) :
Set :=
exist_5 :
forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5),
P x1 x2 x3 x4 x5 -> sig_5 T1 T2 T3 T4 T5 P.
Inductive sig_6 (T1 T2 T3 T4 T5 T6:Set)
(P:T1 -> T2 -> T3 -> T4 -> T5 -> T6 -> Prop) : Set :=
exist_6 :
forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5)
(x6:T6), P x1 x2 x3 x4 x5 x6 -> sig_6 T1 T2 T3 T4 T5 T6 P.
Inductive sig_7 (T1 T2 T3 T4 T5 T6 T7:Set)
(P:T1 -> T2 -> T3 -> T4 -> T5 -> T6 -> T7 -> Prop) : Set :=
exist_7 :
forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5)
(x6:T6) (x7:T7),
P x1 x2 x3 x4 x5 x6 x7 -> sig_7 T1 T2 T3 T4 T5 T6 T7 P.
Inductive sig_8 (T1 T2 T3 T4 T5 T6 T7 T8:Set)
(P:T1 -> T2 -> T3 -> T4 -> T5 -> T6 -> T7 -> T8 -> Prop) : Set :=
exist_8 :
forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5)
(x6:T6) (x7:T7) (x8:T8),
P x1 x2 x3 x4 x5 x6 x7 x8 -> sig_8 T1 T2 T3 T4 T5 T6 T7 T8 P.
Inductive dep_tuple_2 (T1 T2:Set) (P:T1 -> T2 -> Set) : Set :=
Build_dep_tuple_2 :
forall (x1:T1) (x2:T2), P x1 x2 -> dep_tuple_2 T1 T2 P.
Inductive dep_tuple_3 (T1 T2 T3:Set) (P:T1 -> T2 -> T3 -> Set) : Set :=
Build_dep_tuple_3 :
forall (x1:T1) (x2:T2) (x3:T3), P x1 x2 x3 -> dep_tuple_3 T1 T2 T3 P.
|