summaryrefslogtreecommitdiff
path: root/contrib/correctness/Arrays.v
blob: 1659917a30f72fd5fab64d6ef8b2b33390fd4773 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)

(* $Id: Arrays.v,v 1.9.2.1 2004/07/16 19:29:59 herbelin Exp $ *)

(**********************************************)
(* Functional arrays, for use in Correctness. *)
(**********************************************)

(* This is an axiomatization of arrays.
 *
 * The type (array N T) is the type of arrays ranging from 0 to N-1 
 * which elements are of type T.
 *
 * Arrays are created with new, accessed with access and modified with store. 
 *
 * Operations of accessing and storing are not guarded, but axioms are.
 * So these arrays can be viewed as arrays where accessing and storing
 * out of the bounds has no effect.
 *)


Require Export ProgInt.

Set Implicit Arguments.


(* The type of arrays *)

Parameter array : Z -> Set -> Set.


(* Functions to create, access and modify arrays *)

Parameter new : forall (n:Z) (T:Set), T -> array n T.

Parameter access : forall (n:Z) (T:Set), array n T -> Z -> T.

Parameter store : forall (n:Z) (T:Set), array n T -> Z -> T -> array n T.


(* Axioms *)

Axiom
  new_def :
    forall (n:Z) (T:Set) (v0:T) (i:Z),
      (0 <= i < n)%Z -> access (new n v0) i = v0.

Axiom
  store_def_1 :
    forall (n:Z) (T:Set) (t:array n T) (v:T) (i:Z),
      (0 <= i < n)%Z -> access (store t i v) i = v.

Axiom
  store_def_2 :
    forall (n:Z) (T:Set) (t:array n T) (v:T) (i j:Z),
      (0 <= i < n)%Z ->
      (0 <= j < n)%Z -> i <> j -> access (store t i v) j = access t j.

Hint Resolve new_def store_def_1 store_def_2: datatypes v62.

(* A tactic to simplify access in arrays *)

Ltac array_access i j H :=
  elim (Z_eq_dec i j);
   [ intro H; rewrite H; rewrite store_def_1
   | intro H; rewrite store_def_2; [ idtac | idtac | idtac | exact H ] ].

(* Symbolic notation for access *)

Notation "# t [ c ]" := (access t c) (at level 0, t at level 0).