1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(* $Id: cctac.ml 10121 2007-09-14 09:45:40Z corbinea $ *)
(* This file is the interface between the c-c algorithm and Coq *)
open Evd
open Proof_type
open Names
open Libnames
open Nameops
open Inductiveops
open Declarations
open Term
open Termops
open Tacmach
open Tactics
open Tacticals
open Ccalgo
open Tacinterp
open Ccproof
open Pp
open Util
open Format
let constant dir s = lazy (Coqlib.gen_constant "CC" dir s)
let _f_equal = constant ["Init";"Logic"] "f_equal"
let _eq_rect = constant ["Init";"Logic"] "eq_rect"
let _refl_equal = constant ["Init";"Logic"] "refl_equal"
let _sym_eq = constant ["Init";"Logic"] "sym_eq"
let _trans_eq = constant ["Init";"Logic"] "trans_eq"
let _eq = constant ["Init";"Logic"] "eq"
let _False = constant ["Init";"Logic"] "False"
(* decompose member of equality in an applicative format *)
let whd env=
let infos=Closure.create_clos_infos Closure.betaiotazeta env in
(fun t -> Closure.whd_val infos (Closure.inject t))
let whd_delta env=
let infos=Closure.create_clos_infos Closure.betadeltaiota env in
(fun t -> Closure.whd_val infos (Closure.inject t))
let rec decompose_term env t=
match kind_of_term (whd env t) with
App (f,args)->
let tf=decompose_term env f in
let targs=Array.map (decompose_term env) args in
Array.fold_left (fun s t->Appli (s,t)) tf targs
| Construct c->
let (oib,_)=Global.lookup_inductive (fst c) in
let nargs=mis_constructor_nargs_env env c in
Constructor {ci_constr=c;
ci_arity=nargs;
ci_nhyps=nargs-oib.mind_nparams}
| _ ->if closed0 t then (Symb t) else raise Not_found
(* decompose equality in members and type *)
let atom_of_constr env term =
let wh = (whd_delta env term) in
let kot = kind_of_term wh in
match kot with
App (f,args)->
if eq_constr f (Lazy.force _eq) && (Array.length args)=3
then `Eq (args.(0),
decompose_term env args.(1),
decompose_term env args.(2))
else `Other (decompose_term env term)
| _ -> `Other (decompose_term env term)
let rec pattern_of_constr env c =
match kind_of_term (whd env c) with
App (f,args)->
let pf = decompose_term env f in
let pargs,lrels = List.split
(array_map_to_list (pattern_of_constr env) args) in
PApp (pf,List.rev pargs),
List.fold_left Intset.union Intset.empty lrels
| Rel i -> PVar i,Intset.singleton i
| _ ->
let pf = decompose_term env c in
PApp (pf,[]),Intset.empty
let non_trivial = function
PVar _ -> false
| _ -> true
let patterns_of_constr env nrels term=
let f,args=
try destApp (whd_delta env term) with _ -> raise Not_found in
if eq_constr f (Lazy.force _eq) && (Array.length args)=3
then
let patt1,rels1 = pattern_of_constr env args.(1)
and patt2,rels2 = pattern_of_constr env args.(2) in
let valid1 = (Intset.cardinal rels1 = nrels && non_trivial patt1)
and valid2 = (Intset.cardinal rels2 = nrels && non_trivial patt2) in
if valid1 || valid2 then
nrels,valid1,patt1,valid2,patt2
else raise Not_found
else raise Not_found
let rec quantified_atom_of_constr env nrels term =
match kind_of_term (whd_delta env term) with
Prod (_,atom,ff) ->
if eq_constr ff (Lazy.force _False) then
let patts=patterns_of_constr env nrels atom in
`Nrule patts
else
quantified_atom_of_constr env (succ nrels) ff
| _ ->
let patts=patterns_of_constr env nrels term in
`Rule patts
let litteral_of_constr env term=
match kind_of_term (whd_delta env term) with
| Prod (_,atom,ff) ->
if eq_constr ff (Lazy.force _False) then
match (atom_of_constr env atom) with
`Eq(t,a,b) -> `Neq(t,a,b)
| `Other(p) -> `Nother(p)
else
begin
try
quantified_atom_of_constr env 1 ff
with Not_found ->
`Other (decompose_term env term)
end
| _ ->
atom_of_constr env term
(* store all equalities from the context *)
let rec make_prb gls depth additionnal_terms =
let env=pf_env gls in
let state = empty depth in
let pos_hyps = ref [] in
let neg_hyps =ref [] in
List.iter
(fun c ->
let t = decompose_term env c in
ignore (add_term state t)) additionnal_terms;
List.iter
(fun (id,_,e) ->
begin
let cid=mkVar id in
match litteral_of_constr env e with
`Eq (t,a,b) -> add_equality state cid a b
| `Neq (t,a,b) -> add_disequality state (Hyp cid) a b
| `Other ph ->
List.iter
(fun (cidn,nh) ->
add_disequality state (HeqnH (cid,cidn)) ph nh)
!neg_hyps;
pos_hyps:=(cid,ph):: !pos_hyps
| `Nother nh ->
List.iter
(fun (cidp,ph) ->
add_disequality state (HeqnH (cidp,cid)) ph nh)
!pos_hyps;
neg_hyps:=(cid,nh):: !neg_hyps
| `Rule patts -> add_quant state id true patts
| `Nrule patts -> add_quant state id false patts
end) (Environ.named_context_of_val gls.it.evar_hyps);
begin
match atom_of_constr env gls.it.evar_concl with
`Eq (t,a,b) -> add_disequality state Goal a b
| `Other g ->
List.iter
(fun (idp,ph) ->
add_disequality state (HeqG idp) ph g) !pos_hyps
end;
state
(* indhyps builds the array of arrays of constructor hyps for (ind largs) *)
let build_projection intype outtype (cstr:constructor) special default gls=
let env=pf_env gls in
let (h,argv) =
try destApp intype with
Invalid_argument _ -> (intype,[||]) in
let ind=destInd h in
let types=Inductiveops.arities_of_constructors env ind in
let lp=Array.length types in
let ci=pred (snd cstr) in
let branch i=
let ti=Term.prod_appvect types.(i) argv in
let rc=fst (Sign.decompose_prod_assum ti) in
let head=
if i=ci then special else default in
Sign.it_mkLambda_or_LetIn head rc in
let branches=Array.init lp branch in
let casee=mkRel 1 in
let pred=mkLambda(Anonymous,intype,outtype) in
let case_info=make_default_case_info (pf_env gls) RegularStyle ind in
let body= mkCase(case_info, pred, casee, branches) in
let id=pf_get_new_id (id_of_string "t") gls in
mkLambda(Name id,intype,body)
(* generate an adhoc tactic following the proof tree *)
let _M =mkMeta
let rec proof_tac p gls =
match p.p_rule with
Ax c -> exact_check c gls
| SymAx c ->
let l=constr_of_term p.p_lhs and
r=constr_of_term p.p_rhs in
let typ = pf_type_of gls l in
exact_check
(mkApp(Lazy.force _sym_eq,[|typ;r;l;c|])) gls
| Refl t ->
let lr = constr_of_term t in
let typ = pf_type_of gls lr in
exact_check
(mkApp(Lazy.force _refl_equal,[|typ;constr_of_term t|])) gls
| Trans (p1,p2)->
let t1 = constr_of_term p1.p_lhs and
t2 = constr_of_term p1.p_rhs and
t3 = constr_of_term p2.p_rhs in
let typ = pf_type_of gls t2 in
let prf =
mkApp(Lazy.force _trans_eq,[|typ;t1;t2;t3;_M 1;_M 2|]) in
tclTHENS (refine prf) [(proof_tac p1);(proof_tac p2)] gls
| Congr (p1,p2)->
let tf1=constr_of_term p1.p_lhs
and tx1=constr_of_term p2.p_lhs
and tf2=constr_of_term p1.p_rhs
and tx2=constr_of_term p2.p_rhs in
let typf = pf_type_of gls tf1 in
let typx = pf_type_of gls tx1 in
let typfx = pf_type_of gls (mkApp (tf1,[|tx1|])) in
let id = pf_get_new_id (id_of_string "f") gls in
let appx1 = mkLambda(Name id,typf,mkApp(mkRel 1,[|tx1|])) in
let lemma1 =
mkApp(Lazy.force _f_equal,
[|typf;typfx;appx1;tf1;tf2;_M 1|]) in
let lemma2=
mkApp(Lazy.force _f_equal,[|typx;typfx;tf2;tx1;tx2;_M 1|]) in
let prf =
mkApp(Lazy.force _trans_eq,
[|typfx;
mkApp(tf1,[|tx1|]);
mkApp(tf2,[|tx1|]);
mkApp(tf2,[|tx2|]);_M 2;_M 3|]) in
tclTHENS (refine prf)
[tclTHEN (refine lemma1) (proof_tac p1);
tclFIRST
[tclTHEN (refine lemma2) (proof_tac p2);
reflexivity;
fun gls ->
errorlabstrm "Congruence"
(Pp.str
"I don't know how to handle dependent equality")]] gls
| Inject (prf,cstr,nargs,argind) ->
let ti=constr_of_term prf.p_lhs in
let tj=constr_of_term prf.p_rhs in
let default=constr_of_term p.p_lhs in
let intype=pf_type_of gls ti in
let outtype=pf_type_of gls default in
let special=mkRel (1+nargs-argind) in
let proj=build_projection intype outtype cstr special default gls in
let injt=
mkApp (Lazy.force _f_equal,[|intype;outtype;proj;ti;tj;_M 1|]) in
tclTHEN (refine injt) (proof_tac prf) gls
let refute_tac c t1 t2 p gls =
let tt1=constr_of_term t1 and tt2=constr_of_term t2 in
let intype=pf_type_of gls tt1 in
let neweq=
mkApp(Lazy.force _eq,
[|intype;tt1;tt2|]) in
let hid=pf_get_new_id (id_of_string "Heq") gls in
let false_t=mkApp (c,[|mkVar hid|]) in
tclTHENS (true_cut (Name hid) neweq)
[proof_tac p; simplest_elim false_t] gls
let convert_to_goal_tac c t1 t2 p gls =
let tt1=constr_of_term t1 and tt2=constr_of_term t2 in
let sort=pf_type_of gls tt2 in
let neweq=mkApp(Lazy.force _eq,[|sort;tt1;tt2|]) in
let e=pf_get_new_id (id_of_string "e") gls in
let x=pf_get_new_id (id_of_string "X") gls in
let identity=mkLambda (Name x,sort,mkRel 1) in
let endt=mkApp (Lazy.force _eq_rect,
[|sort;tt1;identity;c;tt2;mkVar e|]) in
tclTHENS (true_cut (Name e) neweq)
[proof_tac p;exact_check endt] gls
let convert_to_hyp_tac c1 t1 c2 t2 p gls =
let tt2=constr_of_term t2 in
let h=pf_get_new_id (id_of_string "H") gls in
let false_t=mkApp (c2,[|mkVar h|]) in
tclTHENS (true_cut (Name h) tt2)
[convert_to_goal_tac c1 t1 t2 p;
simplest_elim false_t] gls
let discriminate_tac cstr p gls =
let t1=constr_of_term p.p_lhs and t2=constr_of_term p.p_rhs in
let intype=pf_type_of gls t1 in
let concl=pf_concl gls in
let outsort=mkType (new_univ ()) in
let xid=pf_get_new_id (id_of_string "X") gls in
let tid=pf_get_new_id (id_of_string "t") gls in
let identity=mkLambda(Name xid,outsort,mkLambda(Name tid,mkRel 1,mkRel 1)) in
let trivial=pf_type_of gls identity in
let outtype=mkType (new_univ ()) in
let pred=mkLambda(Name xid,outtype,mkRel 1) in
let hid=pf_get_new_id (id_of_string "Heq") gls in
let proj=build_projection intype outtype cstr trivial concl gls in
let injt=mkApp (Lazy.force _f_equal,
[|intype;outtype;proj;t1;t2;mkVar hid|]) in
let endt=mkApp (Lazy.force _eq_rect,
[|outtype;trivial;pred;identity;concl;injt|]) in
let neweq=mkApp(Lazy.force _eq,[|intype;t1;t2|]) in
tclTHENS (true_cut (Name hid) neweq)
[proof_tac p;exact_check endt] gls
(* wrap everything *)
let build_term_to_complete uf meta pac =
let cinfo = get_constructor_info uf pac.cnode in
let real_args = List.map (fun i -> constr_of_term (term uf i)) pac.args in
let dummy_args = List.rev (list_tabulate meta pac.arity) in
let all_args = List.rev_append real_args dummy_args in
applistc (mkConstruct cinfo.ci_constr) all_args
let cc_tactic depth additionnal_terms gls=
Coqlib.check_required_library ["Coq";"Init";"Logic"];
let _ = debug Pp.msgnl (Pp.str "Reading subgoal ...") in
let state = make_prb gls depth additionnal_terms in
let _ = debug Pp.msgnl (Pp.str "Problem built, solving ...") in
let sol = execute true state in
let _ = debug Pp.msgnl (Pp.str "Computation completed.") in
let uf=forest state in
match sol with
None -> tclFAIL 0 (str "congruence failed") gls
| Some reason ->
debug Pp.msgnl (Pp.str "Goal solved, generating proof ...");
match reason with
Discrimination (i,ipac,j,jpac) ->
let p=build_proof uf (`Discr (i,ipac,j,jpac)) in
let cstr=(get_constructor_info uf ipac.cnode).ci_constr in
discriminate_tac cstr p gls
| Incomplete ->
let metacnt = ref 0 in
let newmeta _ = incr metacnt; _M !metacnt in
let terms_to_complete =
List.map
(build_term_to_complete uf newmeta)
(epsilons uf) in
Pp.msgnl
(Pp.str "Goal is solvable by congruence but \
some arguments are missing.");
Pp.msgnl
(Pp.str " Try " ++
hov 8
begin
str "\"congruence with (" ++
prlist_with_sep
(fun () -> str ")" ++ pr_spc () ++ str "(")
(print_constr_env (pf_env gls))
terms_to_complete ++
str ")\","
end);
Pp.msgnl
(Pp.str " replacing metavariables by arbitrary terms.");
tclFAIL 0 (str "Incomplete") gls
| Contradiction dis ->
let p=build_proof uf (`Prove (dis.lhs,dis.rhs)) in
let ta=term uf dis.lhs and tb=term uf dis.rhs in
match dis.rule with
Goal -> proof_tac p gls
| Hyp id -> refute_tac id ta tb p gls
| HeqG id ->
convert_to_goal_tac id ta tb p gls
| HeqnH (ida,idb) ->
convert_to_hyp_tac ida ta idb tb p gls
let cc_fail gls =
errorlabstrm "Congruence" (Pp.str "congruence failed.")
let congruence_tac depth l =
tclORELSE
(tclTHEN (tclREPEAT introf) (cc_tactic depth l))
cc_fail
|