1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: ccalgo.ml 7298 2005-08-17 12:56:38Z corbinea $ *)
(* This file implements the basic congruence-closure algorithm by *)
(* Downey,Sethi and Tarjan. *)
open Util
open Pp
open Goptions
open Names
open Term
let init_size=5
let cc_verbose=ref false
let debug msg (stdpp:std_ppcmds) =
if !cc_verbose then msg stdpp
let _=
let gdopt=
{ optsync=true;
optname="Congruence Verbose";
optkey=SecondaryTable("Congruence","Verbose");
optread=(fun ()-> !cc_verbose);
optwrite=(fun b -> cc_verbose := b)}
in
declare_bool_option gdopt
(* Signature table *)
module ST=struct
(* l: sign -> term r: term -> sign *)
type t = {toterm:(int*int,int) Hashtbl.t;
tosign:(int,int*int) Hashtbl.t}
let empty ()=
{toterm=Hashtbl.create init_size;
tosign=Hashtbl.create init_size}
let enter t sign st=
if Hashtbl.mem st.toterm sign then
anomaly "enter: signature already entered"
else
Hashtbl.replace st.toterm sign t;
Hashtbl.replace st.tosign t sign
let query sign st=Hashtbl.find st.toterm sign
let delete st t=
try let sign=Hashtbl.find st.tosign t in
Hashtbl.remove st.toterm sign;
Hashtbl.remove st.tosign t
with
Not_found -> ()
let rec delete_set st s = Intset.iter (delete st) s
end
type pa_constructor=
{ cnode : int;
arity : int;
args : int list}
module PacMap=Map.Make(struct
type t=pa_constructor
let compare=Pervasives.compare end)
type cinfo=
{ci_constr: constructor; (* inductive type *)
ci_arity: int; (* # args *)
ci_nhyps: int} (* # projectable args *)
type term=
Symb of constr
| Eps
| Appli of term*term
| Constructor of cinfo (* constructor arity + nhyps *)
type rule=
Congruence
| Axiom of identifier * bool
| Injection of int * pa_constructor * int * pa_constructor * int
type from=
Goal
| Hyp of identifier
| HeqG of identifier
| HeqnH of identifier * identifier
type 'a eq = {lhs:int;rhs:int;rule:'a}
type equality = rule eq
type disequality = from eq
let swap eq : equality =
let swap_rule=match eq.rule with
Congruence -> Congruence
| Injection (i,pi,j,pj,k) -> Injection (j,pj,i,pi,k)
| Axiom (id,reversed) -> Axiom (id,not reversed)
in {lhs=eq.rhs;rhs=eq.lhs;rule=swap_rule}
type inductive_status =
Unknown
| Partial of pa_constructor
| Partial_applied
| Total of (int * pa_constructor)
type representative=
{mutable nfathers:int;
mutable lfathers:Intset.t;
mutable fathers:Intset.t;
mutable inductive_status: inductive_status;
mutable constructors: int PacMap.t} (*pac -> term = app(constr,t) *)
type cl = Rep of representative| Eqto of int*equality
type vertex = Leaf| Node of (int*int)
type node =
{mutable clas:cl;
mutable cpath: int;
vertex:vertex;
term:term}
type forest=
{mutable max_size:int;
mutable size:int;
mutable map: node array;
axioms: (identifier,term*term) Hashtbl.t;
mutable epsilons: pa_constructor list;
syms:(term,int) Hashtbl.t}
type state =
{uf: forest;
sigtable:ST.t;
mutable terms: Intset.t;
combine: equality Queue.t;
marks: (int * pa_constructor) Queue.t;
mutable diseq: disequality list;
mutable pa_classes: Intset.t}
let dummy_node =
{clas=Eqto(min_int,{lhs=min_int;rhs=min_int;rule=Congruence});
cpath=min_int;
vertex=Leaf;
term=Symb (mkRel min_int)}
let empty ():state =
{uf=
{max_size=init_size;
size=0;
map=Array.create init_size dummy_node;
epsilons=[];
axioms=Hashtbl.create init_size;
syms=Hashtbl.create init_size};
terms=Intset.empty;
combine=Queue.create ();
marks=Queue.create ();
sigtable=ST.empty ();
diseq=[];
pa_classes=Intset.empty}
let forest state = state.uf
let compress_path uf i j = uf.map.(j).cpath<-i
let rec find_aux uf visited i=
let j = uf.map.(i).cpath in
if j<0 then let _ = List.iter (compress_path uf i) visited in i else
find_aux uf (i::visited) j
let find uf i= find_aux uf [] i
let get_representative uf i=
match uf.map.(i).clas with
Rep r -> r
| _ -> anomaly "get_representative: not a representative"
let find_pac uf i pac =
PacMap.find pac (get_representative uf i).constructors
let get_constructor_info uf i=
match uf.map.(i).term with
Constructor cinfo->cinfo
| _ -> anomaly "get_constructor: not a constructor"
let size uf i=
(get_representative uf i).nfathers
let axioms uf = uf.axioms
let epsilons uf = uf.epsilons
let add_lfather uf i t=
let r=get_representative uf i in
r.nfathers<-r.nfathers+1;
r.lfathers<-Intset.add t r.lfathers;
r.fathers <-Intset.add t r.fathers
let add_rfather uf i t=
let r=get_representative uf i in
r.nfathers<-r.nfathers+1;
r.fathers <-Intset.add t r.fathers
exception Discriminable of int * pa_constructor * int * pa_constructor
let append_pac t p =
{p with arity=pred p.arity;args=t::p.args}
let tail_pac p=
{p with arity=succ p.arity;args=List.tl p.args}
let add_pac rep pac t =
if not (PacMap.mem pac rep.constructors) then
rep.constructors<-PacMap.add pac t rep.constructors
let term uf i=uf.map.(i).term
let subterms uf i=
match uf.map.(i).vertex with
Node(j,k) -> (j,k)
| _ -> anomaly "subterms: not a node"
let signature uf i=
let j,k=subterms uf i in (find uf j,find uf k)
let next uf=
let size=uf.size in
let nsize= succ size in
if nsize=uf.max_size then
let newmax=uf.max_size * 3 / 2 + 1 in
let newmap=Array.create newmax dummy_node in
begin
uf.max_size<-newmax;
Array.blit uf.map 0 newmap 0 size;
uf.map<-newmap
end
else ();
uf.size<-nsize;
size
let new_representative ()=
{nfathers=0;
lfathers=Intset.empty;
fathers=Intset.empty;
inductive_status=Unknown;
constructors=PacMap.empty}
let rec add_term state t=
let uf=state.uf in
try Hashtbl.find uf.syms t with
Not_found ->
let b=next uf in
let new_node=
match t with
Symb _ | Eps ->
{clas= Rep (new_representative ());
cpath= -1;
vertex= Leaf;
term= t}
| Appli (t1,t2) ->
let i1=add_term state t1 and i2=add_term state t2 in
add_lfather uf (find uf i1) b;
add_rfather uf (find uf i2) b;
state.terms<-Intset.add b state.terms;
{clas= Rep (new_representative ());
cpath= -1;
vertex= Node(i1,i2);
term= t}
| Constructor cinfo ->
let pac =
{cnode= b;
arity= cinfo.ci_arity;
args=[]} in
Queue.add (b,pac) state.marks;
{clas=Rep (new_representative ());
cpath= -1;
vertex=Leaf;
term=t}
in
uf.map.(b)<-new_node;
Hashtbl.add uf.syms t b;
b
let add_equality state id s t=
let i = add_term state s in
let j = add_term state t in
Queue.add {lhs=i;rhs=j;rule=Axiom(id,false)} state.combine;
Hashtbl.add state.uf.axioms id (s,t)
let add_disequality state from s t =
let i = add_term state s in
let j = add_term state t in
state.diseq<-{lhs=i;rhs=j;rule=from}::state.diseq
let link uf i j eq = (* links i -> j *)
let node=uf.map.(i) in
node.clas<-Eqto (j,eq);
node.cpath<-j
let rec down_path uf i l=
match uf.map.(i).clas with
Eqto(j,t)->down_path uf j (((i,j),t)::l)
| Rep _ ->l
let rec min_path=function
([],l2)->([],l2)
| (l1,[])->(l1,[])
| (((c1,t1)::q1),((c2,t2)::q2)) when c1=c2 -> min_path (q1,q2)
| cpl -> cpl
let join_path uf i j=
assert (find uf i=find uf j);
min_path (down_path uf i [],down_path uf j [])
let union state i1 i2 eq=
debug msgnl (str "Linking " ++ int i1 ++ str " and " ++ int i2 ++ str ".");
let r1= get_representative state.uf i1
and r2= get_representative state.uf i2 in
link state.uf i1 i2 eq;
let f= Intset.union r1.fathers r2.fathers in
r2.nfathers<-Intset.cardinal f;
r2.fathers<-f;
r2.lfathers<-Intset.union r1.lfathers r2.lfathers;
ST.delete_set state.sigtable r1.fathers;
state.terms<-Intset.union state.terms r1.fathers;
PacMap.iter (fun pac b -> Queue.add (b,pac) state.marks) r1.constructors;
match r1.inductive_status,r2.inductive_status with
Unknown,_ -> ()
| Partial pac,Unknown ->
r2.inductive_status<-Partial pac;
state.pa_classes<-Intset.remove i1 state.pa_classes;
state.pa_classes<-Intset.add i2 state.pa_classes
| Partial _ ,(Partial _ |Partial_applied) ->
state.pa_classes<-Intset.remove i1 state.pa_classes
| Partial_applied,Unknown ->
r2.inductive_status<-Partial_applied
| Partial_applied,Partial _ ->
state.pa_classes<-Intset.remove i2 state.pa_classes;
r2.inductive_status<-Partial_applied
| Total cpl,Unknown -> r2.inductive_status<-Total cpl;
| Total cpl,Total _ -> Queue.add cpl state.marks
| _,_ -> ()
let merge eq state = (* merge and no-merge *)
debug msgnl
(str "Merging " ++ int eq.lhs ++ str " and " ++ int eq.rhs ++ str ".");
let uf=state.uf in
let i=find uf eq.lhs
and j=find uf eq.rhs in
if i<>j then
if (size uf i)<(size uf j) then
union state i j eq
else
union state j i (swap eq)
let update t state = (* update 1 and 2 *)
debug msgnl
(str "Updating term " ++ int t ++ str ".");
let (i,j) as sign = signature state.uf t in
let (u,v) = subterms state.uf t in
let rep = get_representative state.uf i in
begin
match rep.inductive_status with
Partial _ ->
rep.inductive_status <- Partial_applied;
state.pa_classes <- Intset.remove i state.pa_classes
| _ -> ()
end;
PacMap.iter
(fun pac _ -> Queue.add (t,append_pac v pac) state.marks)
rep.constructors;
try
let s = ST.query sign state.sigtable in
Queue.add {lhs=t;rhs=s;rule=Congruence} state.combine
with
Not_found -> ST.enter t sign state.sigtable
let process_mark t pac state =
debug msgnl
(str "Processing mark for term " ++ int t ++ str ".");
let i=find state.uf t in
let rep=get_representative state.uf i in
match rep.inductive_status with
Total (s,opac) ->
if pac.cnode <> opac.cnode then (* Conflict *)
raise (Discriminable (s,opac,t,pac))
else (* Match *)
let cinfo = get_constructor_info state.uf pac.cnode in
let rec f n oargs args=
if n > 0 then
match (oargs,args) with
s1::q1,s2::q2->
Queue.add
{lhs=s1;rhs=s2;rule=Injection(s,opac,t,pac,n)}
state.combine;
f (n-1) q1 q2
| _-> anomaly
"add_pacs : weird error in injection subterms merge"
in f cinfo.ci_nhyps opac.args pac.args
| Partial_applied | Partial _ ->
add_pac rep pac t;
state.terms<-Intset.union rep.lfathers state.terms
| Unknown ->
if pac.arity = 0 then
rep.inductive_status <- Total (t,pac)
else
begin
add_pac rep pac t;
state.terms<-Intset.union rep.lfathers state.terms;
rep.inductive_status <- Partial pac;
state.pa_classes<- Intset.add i state.pa_classes
end
type explanation =
Discrimination of (int*pa_constructor*int*pa_constructor)
| Contradiction of disequality
| Incomplete
let check_disequalities state =
let uf=state.uf in
let rec check_aux = function
dis::q ->
debug msg
(str "Checking if " ++ int dis.lhs ++ str " = " ++
int dis.rhs ++ str " ... ");
if find uf dis.lhs=find uf dis.rhs then
begin debug msgnl (str "Yes");Some dis end
else
begin debug msgnl (str "No");check_aux q end
| [] -> None
in
check_aux state.diseq
let one_step state =
try
let eq = Queue.take state.combine in
merge eq state
with Queue.Empty ->
try
let (t,m) = Queue.take state.marks in
process_mark t m state
with Queue.Empty ->
let t = Intset.choose state.terms in
state.terms<-Intset.remove t state.terms;
update t state
let complete_one_class state i=
match (get_representative state.uf i).inductive_status with
Partial pac ->
let rec app t n =
if n<=0 then t else
app (Appli(t,Eps)) (n-1) in
state.uf.epsilons <- pac :: state.uf.epsilons;
ignore (add_term state (app (term state.uf i) pac.arity))
| _ -> anomaly "wrong incomplete class"
let complete state =
Intset.iter (complete_one_class state) state.pa_classes
let rec execute first_run state =
debug msgnl (str "Executing ... ");
try
while true do
one_step state
done;
anomaly "keep out of here"
with
Discriminable(s,spac,t,tpac) ->
Some
begin
if first_run then
Discrimination (s,spac,t,tpac)
else
Incomplete
end
| Not_found ->
match check_disequalities state with
None ->
if not(Intset.is_empty state.pa_classes) then
begin
debug msgnl
(str "First run was incomplete, completing ... ");
complete state;
execute false state
end
else None
| Some dis -> Some
begin
if first_run then
Contradiction dis
else
Incomplete
end
|