summaryrefslogtreecommitdiff
path: root/checker/validate.ml
blob: 86e51b7b961298a19d825f66817e2e8f928ba95e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id: term.ml 10098 2007-08-27 11:41:08Z herbelin $ *)

(* This module defines validation functions to ensure an imported
   value (using input_value) has the correct structure. *)

let rec pr_obj_rec o =
  if Obj.is_int o then
    Format.print_string ("INT:"^string_of_int(Obj.magic o))
  else if Obj.is_block o then
    let t = Obj.tag o in
    if t > Obj.no_scan_tag then
      if t = Obj.string_tag then
        Format.print_string ("STR:"^Obj.magic o)
      else
        Format.print_string "?"
    else
      (let n = Obj.size o in
      Format.print_string ("#"^string_of_int t^"(");
      Format.open_hvbox 0;
      for i = 0 to n-1 do
        pr_obj_rec (Obj.field o i);
        if i<>n-1 then (Format.print_string ","; Format.print_cut())
      done;
      Format.close_box();
      Format.print_string ")")
  else Format.print_string "?"

let pr_obj o = pr_obj_rec o; Format.print_newline()

(**************************************************************************)
(* Low-level validators *)

(* data not validated *)
let no_val (o:Obj.t) = ()

(* Check that object o is a block with tag t *)
let val_tag t o =
  if Obj.is_block o && Obj.tag o = t then ()
  else failwith ("tag "^string_of_int t)

let val_obj s o =
  if Obj.is_block o then
    (if Obj.tag o > Obj.no_scan_tag then
      failwith (s^". Not a normal tag"))
  else failwith (s^". Not a block")

(* Check that an object is a tuple (or a record). v is an array of
   validation functions for each field. Its size corresponds to the
   expected size of the object. *)
let val_tuple s v o =
  let n = Array.length v in
  val_obj ("tuple: "^s) o;
  if Obj.size o = n then
    Array.iteri (fun i f -> f (Obj.field o i)) v
  else
    (pr_obj o;
     failwith
       ("tuple:" ^s^" size found:"^string_of_int (Obj.size o)))

(* Check that the object is either a constant constructor of tag < cc,
   or a constructed variant. each element of vv is an array of
   validation functions to be applied to the constructor arguments.
   The size of vv corresponds to the number of non-constant
   constructors, and the size of vv.(i) is the expected arity of the
   i-th non-constant constructor. *)
let val_sum s cc vv o =
  if Obj.is_block o then
    (val_obj ("sum: "^s) o;
    let n = Array.length vv in
    let i = Obj.tag o in
    if i < n then val_tuple (s^"("^string_of_int i^")") vv.(i) o
    else failwith ("bad tag in sum ("^s^"): "^string_of_int i))
  else if Obj.is_int o then
    let (n:int) = Obj.magic o in
    (if n<0 || n>=cc then failwith ("bad constant constructor ("^s^")"))
  else failwith ("not a sum ("^s^")")

let val_enum s n = val_sum s n [||]

(* Recursive types: avoid looping by eta-expansion *)
let rec val_rec_sum s cc f o =
  val_sum s cc (f (val_rec_sum s cc f)) o

(**************************************************************************)
(* Builtin types *)

(* Check the o is an array of values satisfying f. *)
let val_array f o =
  val_obj "array" o;
  for i = 0 to Obj.size o - 1 do
    (f (Obj.field o i):unit)
  done

(* Integer validator *)
let val_int o =
  if not (Obj.is_int o) then failwith "expected an int"

(* String validator *)
let val_str s = val_tag Obj.string_tag s

(* Booleans *)
let val_bool = val_enum "bool" 2

(* Option type *)
let val_opt f = val_sum "option" 1 [|[|f|]|]

(* Lists *)
let val_list f =
  val_rec_sum "list" 1 (fun vlist -> [|[|f;vlist|]|])

(* Reference *)
let val_ref f = val_tuple "ref" [|f|]

(**************************************************************************)
(* Standard library types *)

(* Sets *)
let val_set f =
  val_rec_sum "set" 1 (fun vset -> [|[|vset;f;vset;val_int|]|])

(* Maps *)
let rec val_map fk fv =
  val_rec_sum "map" 1 (fun vmap -> [|[|vmap;fk;fv;vmap;val_int|]|])

(**************************************************************************)
(* Coq types *)

let val_id = val_str

let val_dp = val_list val_id

let val_name = val_sum "name" 1 [|[|val_id|]|]

let val_uid = val_tuple "uid" [|val_int;val_str;val_dp|]

let val_mp =
  val_rec_sum "mp" 0
    (fun vmp -> [|[|val_dp|];[|val_uid|];[|val_uid|];[|vmp;val_id|]|])

let val_kn = val_tuple "kn" [|val_mp;val_dp;val_id|]

let val_ind = val_tuple "ind"[|val_kn;val_int|]
let val_cstr = val_tuple "cstr"[|val_ind;val_int|]

let val_ci =
  let val_cstyle = val_enum "case_style" 5 in
  let val_cprint = val_tuple "case_printing" [|val_int;val_cstyle|] in
  val_tuple "case_info" [|val_ind;val_int;val_array val_int;val_cprint|]


let val_level = val_sum "level" 1 [|[|val_dp;val_int|]|]
let val_univ = val_sum "univ" 0
  [|[|val_level|];[|val_list val_level;val_list val_level|]|]

let val_cstrs =
  val_set (val_tuple"univ_cstr"[|val_level;val_enum "order" 3;val_level|])

let val_cast = val_enum "cast_kind" 2
let val_sort = val_sum "sort" 0 [|[|val_enum "cnt" 2|];[|val_univ|]|]
let val_sortfam = val_enum "sort_family" 3

let val_evar f = val_tuple "evar" [|val_int;val_array f|]

let val_prec f =
  val_tuple "prec"[|val_array val_name; val_array f; val_array f|]
let val_fix f =
  val_tuple"fix1"[|val_tuple"fix2"[|val_array val_int;val_int|];val_prec f|]
let val_cofix f = val_tuple"cofix"[|val_int;val_prec f|]


let val_constr = val_rec_sum "constr" 0 (fun val_constr -> [|
  [|val_int|]; (* Rel *)
  [|val_id|]; (* Var *)
  [|val_int|]; (* Meta *)
  [|val_evar val_constr|]; (* Evar *)
  [|val_sort|]; (* Sort *)
  [|val_constr;val_cast;val_constr|]; (* Cast *)
  [|val_name;val_constr;val_constr|]; (* Prod *)
  [|val_name;val_constr;val_constr|]; (* Lambda *)
  [|val_name;val_constr;val_constr;val_constr|]; (* LetIn *)
  [|val_constr;val_array val_constr|]; (* App *)
  [|val_kn|]; (* Const *)
  [|val_ind|]; (* Ind *)
  [|val_cstr|]; (* Construct *)
  [|val_ci;val_constr;val_constr;val_array val_constr|]; (* Case *)
  [|val_fix val_constr|]; (* Fix *)
  [|val_cofix val_constr|] (* CoFix *)
|])


let val_ndecl = val_tuple"ndecl"[|val_id;val_opt val_constr;val_constr|]
let val_rdecl = val_tuple"rdecl"[|val_name;val_opt val_constr;val_constr|]
let val_nctxt = val_list val_ndecl
let val_rctxt = val_list val_rdecl

let val_arity = val_tuple"arity"[|val_rctxt;val_constr|]

let val_eng = val_enum "eng" 1

let val_pol_arity = val_tuple"pol_arity"[|val_list(val_opt val_univ);val_univ|]
let val_cst_type =
  val_sum "cst_type" 0 [|[|val_constr|];[|val_rctxt;val_pol_arity|]|]

let val_subst_dom =
  val_sum "subst_dom" 0 [|[|val_uid|];[|val_uid|];[|val_mp|]|]


let val_res = val_opt no_val

let val_subst =
  val_map val_subst_dom (val_tuple "subst range" [|val_mp;val_res|])

let val_cstr_subst =
  val_ref (val_sum "cstr_subst" 0 [|[|val_constr|];[|val_subst;val_constr|]|])

let val_cb = val_tuple "cb"
  [|val_nctxt;val_opt val_cstr_subst; val_cst_type;no_val;val_cstrs;
    val_bool; val_bool |]

let val_recarg = val_sum "recarg" 1 [|[|val_int|];[|val_ind|]|]

let val_wfp = val_rec_sum "wf_paths" 0
  (fun val_wfp -> 
    [|[|val_int;val_int|];[|val_recarg;val_array val_wfp|];
      [|val_int;val_array val_wfp|]|])

let val_mono_ind_arity = val_tuple"mono_ind_arity"[|val_constr;val_sort|]
let val_ind_arity = val_sum "ind_arity" 0
  [|[|val_mono_ind_arity|];[|val_pol_arity|]|]

let val_one_ind = val_tuple "one_ind"
  [|val_id;val_rctxt;val_ind_arity;val_array val_id;val_array val_constr;
    val_int; val_list val_sortfam;val_array val_constr;val_array val_int;
    val_wfp; val_int; val_int; no_val|]

let val_ind_pack = val_tuple "ind_pack"
  [|val_array val_one_ind;val_bool;val_bool;val_int;val_nctxt;
    val_int; val_int; val_rctxt;val_cstrs;val_opt val_kn|]

let rec val_sfb o = val_sum "sfb" 0
  [|[|val_cb|];[|val_ind_pack|];[|val_mod|];
    [|val_mp;val_opt val_cstrs|];[|val_modty|]|] o
and val_sb o = val_list (val_tuple"sb"[|val_id;val_sfb|]) o
and val_seb o = val_sum "seb" 0
  [|[|val_mp|];[|val_uid;val_modty;val_seb|];[|val_uid;val_sb|];
    [|val_seb;val_seb;val_cstrs|];[|val_seb;val_with|]|] o
and val_with o = val_sum "with" 0
  [|[|val_list val_id;val_mp;val_cstrs|];
    [|val_list val_id;val_cb|]|] o
and val_mod o = val_tuple "module_body"
  [|val_opt val_seb;val_opt val_seb;val_cstrs;val_subst;no_val|] o
and val_modty o = val_tuple "module_type_body"
  [|val_seb;val_opt val_mp;val_subst|] o

let val_deps = val_list (val_tuple"dep"[|val_dp;no_val|])

let val_vo = val_tuple "vo" [|val_dp;val_mod;val_deps;val_eng|]