1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
|
open Util
open Names
open Term
open Validate
(* Bytecode *)
type values
type reloc_table
type to_patch_substituted
(*Retroknowledge *)
type action
type retroknowledge
type engagement = ImpredicativeSet
let val_eng = val_enum "eng" 1
type polymorphic_arity = {
poly_param_levels : Univ.universe option list;
poly_level : Univ.universe;
}
let val_pol_arity =
val_tuple"polyorphic_arity"[|val_list(val_opt val_univ);val_univ|]
type constant_type =
| NonPolymorphicType of constr
| PolymorphicArity of rel_context * polymorphic_arity
let val_cst_type =
val_sum "constant_type" 0 [|[|val_constr|];[|val_rctxt;val_pol_arity|]|]
type substitution_domain =
| MBI of mod_bound_id
| MPI of module_path
let val_subst_dom =
val_sum "substitution_domain" 0 [|[|val_uid|];[|val_mp|]|]
module Umap = Map.Make(struct
type t = substitution_domain
let compare = Pervasives.compare
end)
type delta_hint =
Inline of constr option
| Equiv of kernel_name
| Prefix_equiv of module_path
type delta_key =
KN of kernel_name
| MP of module_path
module Deltamap = Map.Make(struct
type t = delta_key
let compare = Pervasives.compare
end)
type delta_resolver = delta_hint Deltamap.t
let empty_delta_resolver = Deltamap.empty
type substitution = (module_path * delta_resolver) Umap.t
type 'a subst_fun = substitution -> 'a -> 'a
let val_res_dom =
val_sum "delta_key" 0 [|[|val_kn|];[|val_mp|]|]
let val_res =
val_map ~name:"delta_resolver"
val_res_dom
(val_sum "delta_hint" 0 [|[|val_opt val_constr|];[|val_kn|];[|val_mp|]|])
let val_subst =
val_map ~name:"substitution"
val_subst_dom (val_tuple "substition range" [|val_mp;val_res|])
let fold_subst fb fp =
Umap.fold
(fun k (mp,_) acc ->
match k with
| MBI mbid -> fb mbid mp acc
| MPI mp1 -> fp mp1 mp acc)
let empty_subst = Umap.empty
let add_mbid mbid mp =
Umap.add (MBI mbid) (mp,empty_delta_resolver)
let add_mp mp1 mp2 =
Umap.add (MPI mp1) (mp2,empty_delta_resolver)
let map_mbid mbid mp = add_mbid mbid mp empty_subst
let map_mp mp1 mp2 = add_mp mp1 mp2 empty_subst
let add_inline_delta_resolver con =
Deltamap.add (KN(user_con con)) (Inline None)
let add_inline_constr_delta_resolver con cstr =
Deltamap.add (KN(user_con con)) (Inline (Some cstr))
let add_constant_delta_resolver con =
Deltamap.add (KN(user_con con)) (Equiv (canonical_con con))
let add_mind_delta_resolver mind =
Deltamap.add (KN(user_mind mind)) (Equiv (canonical_mind mind))
let add_mp_delta_resolver mp1 mp2 =
Deltamap.add (MP mp1) (Prefix_equiv mp2)
let mp_in_delta mp =
Deltamap.mem (MP mp)
let con_in_delta con resolver =
try
match Deltamap.find (KN(user_con con)) resolver with
| Inline _ | Prefix_equiv _ -> false
| Equiv _ -> true
with
Not_found -> false
let mind_in_delta mind resolver =
try
match Deltamap.find (KN(user_mind mind)) resolver with
| Inline _ | Prefix_equiv _ -> false
| Equiv _ -> true
with
Not_found -> false
let delta_of_mp resolve mp =
try
match Deltamap.find (MP mp) resolve with
| Prefix_equiv mp1 -> mp1
| _ -> anomaly "mod_subst: bad association in delta_resolver"
with
Not_found -> mp
let delta_of_kn resolve kn =
try
match Deltamap.find (KN kn) resolve with
| Equiv kn1 -> kn1
| Inline _ -> kn
| _ -> anomaly
"mod_subst: bad association in delta_resolver"
with
Not_found -> kn
let remove_mp_delta_resolver resolver mp =
Deltamap.remove (MP mp) resolver
exception Inline_kn
let rec find_prefix resolve mp =
let rec sub_mp = function
| MPdot(mp,l) as mp_sup ->
(try
match Deltamap.find (MP mp_sup) resolve with
| Prefix_equiv mp1 -> mp1
| _ -> anomaly
"mod_subst: bad association in delta_resolver"
with
Not_found -> MPdot(sub_mp mp,l))
| p ->
match Deltamap.find (MP p) resolve with
| Prefix_equiv mp1 -> mp1
| _ -> anomaly
"mod_subst: bad association in delta_resolver"
in
try
sub_mp mp
with
Not_found -> mp
let solve_delta_kn resolve kn =
try
match Deltamap.find (KN kn) resolve with
| Equiv kn1 -> kn1
| Inline _ -> raise Inline_kn
| _ -> anomaly
"mod_subst: bad association in delta_resolver"
with
Not_found | Inline_kn ->
let mp,dir,l = repr_kn kn in
let new_mp = find_prefix resolve mp in
if mp == new_mp then
kn
else
make_kn new_mp dir l
let constant_of_delta resolve con =
let kn = user_con con in
let new_kn = solve_delta_kn resolve kn in
if kn == new_kn then
con
else
constant_of_kn_equiv kn new_kn
let constant_of_delta2 resolve con =
let kn = canonical_con con in
let kn1 = user_con con in
let new_kn = solve_delta_kn resolve kn in
if kn == new_kn then
con
else
constant_of_kn_equiv kn1 new_kn
let mind_of_delta resolve mind =
let kn = user_mind mind in
let new_kn = solve_delta_kn resolve kn in
if kn == new_kn then
mind
else
mind_of_kn_equiv kn new_kn
let mind_of_delta2 resolve mind =
let kn = canonical_mind mind in
let kn1 = user_mind mind in
let new_kn = solve_delta_kn resolve kn in
if kn == new_kn then
mind
else
mind_of_kn_equiv kn1 new_kn
let inline_of_delta resolver =
let extract key hint l =
match key,hint with
|KN kn, Inline _ -> kn::l
| _,_ -> l
in
Deltamap.fold extract resolver []
exception Not_inline
let constant_of_delta_with_inline resolve con =
let kn1,kn2 = canonical_con con,user_con con in
try
match Deltamap.find (KN kn2) resolve with
| Inline None -> None
| Inline (Some const) -> Some const
| _ -> raise Not_inline
with
Not_found | Not_inline ->
try match Deltamap.find (KN kn1) resolve with
| Inline None -> None
| Inline (Some const) -> Some const
| _ -> raise Not_inline
with
Not_found | Not_inline -> None
let subst_mp0 sub mp = (* 's like subst *)
let rec aux mp =
match mp with
| MPfile sid ->
let mp',resolve = Umap.find (MPI (MPfile sid)) sub in
mp',resolve
| MPbound bid ->
begin
try
let mp',resolve = Umap.find (MBI bid) sub in
mp',resolve
with Not_found ->
let mp',resolve = Umap.find (MPI mp) sub in
mp',resolve
end
| MPdot (mp1,l) as mp2 ->
begin
try
let mp',resolve = Umap.find (MPI mp2) sub in
mp',resolve
with Not_found ->
let mp1',resolve = aux mp1 in
MPdot (mp1',l),resolve
end
in
try
Some (aux mp)
with Not_found -> None
let subst_mp sub mp =
match subst_mp0 sub mp with
None -> mp
| Some (mp',_) -> mp'
let subst_kn_delta sub kn =
let mp,dir,l = repr_kn kn in
match subst_mp0 sub mp with
Some (mp',resolve) ->
solve_delta_kn resolve (make_kn mp' dir l)
| None -> kn
let subst_kn sub kn =
let mp,dir,l = repr_kn kn in
match subst_mp0 sub mp with
Some (mp',_) ->
make_kn mp' dir l
| None -> kn
exception No_subst
type sideconstantsubst =
| User
| Canonical
let subst_ind sub mind =
let kn1,kn2 = user_mind mind,canonical_mind mind in
let mp1,dir,l = repr_kn kn1 in
let mp2,_,_ = repr_kn kn2 in
try
let side,mind',resolve =
match subst_mp0 sub mp1,subst_mp0 sub mp2 with
None,None ->raise No_subst
| Some (mp',resolve),None -> User,(make_mind_equiv mp' mp2 dir l), resolve
| None, Some(mp',resolve)-> Canonical,(make_mind_equiv mp1 mp' dir l), resolve
| Some(mp1',resolve1),Some(mp2',resolve2)->Canonical,
(make_mind_equiv mp1' mp2' dir l), resolve2
in
match side with
|User ->
let mind = mind_of_delta resolve mind' in
mind
|Canonical ->
let mind = mind_of_delta2 resolve mind' in
mind
with
No_subst -> mind
let subst_mind0 sub mind =
let kn1,kn2 = user_mind mind,canonical_mind mind in
let mp1,dir,l = repr_kn kn1 in
let mp2,_,_ = repr_kn kn2 in
try
let side,mind',resolve =
match subst_mp0 sub mp1,subst_mp0 sub mp2 with
None,None ->raise No_subst
| Some (mp',resolve),None -> User,(make_mind_equiv mp' mp2 dir l), resolve
| None, Some(mp',resolve)-> Canonical,(make_mind_equiv mp1 mp' dir l), resolve
| Some(mp1',resolve1),Some(mp2',resolve2)->Canonical,
(make_mind_equiv mp1' mp2' dir l), resolve2
in
match side with
|User ->
let mind = mind_of_delta resolve mind' in
Some mind
|Canonical ->
let mind = mind_of_delta2 resolve mind' in
Some mind
with
No_subst -> Some mind
let subst_con sub con =
let kn1,kn2 = user_con con,canonical_con con in
let mp1,dir,l = repr_kn kn1 in
let mp2,_,_ = repr_kn kn2 in
try
let side,con',resolve =
match subst_mp0 sub mp1,subst_mp0 sub mp2 with
None,None ->raise No_subst
| Some (mp',resolve),None -> User,(make_con_equiv mp' mp2 dir l), resolve
| None, Some(mp',resolve)-> Canonical,(make_con_equiv mp1 mp' dir l), resolve
| Some(mp1',resolve1),Some(mp2',resolve2)->Canonical,
(make_con_equiv mp1' mp2' dir l), resolve2
in
match constant_of_delta_with_inline resolve con' with
None -> begin
match side with
|User ->
let con = constant_of_delta resolve con' in
con,Const con
|Canonical ->
let con = constant_of_delta2 resolve con' in
con,Const con
end
| Some t -> con',t
with No_subst -> con , Const con
let subst_con0 sub con =
let kn1,kn2 = user_con con,canonical_con con in
let mp1,dir,l = repr_kn kn1 in
let mp2,_,_ = repr_kn kn2 in
try
let side,con',resolve =
match subst_mp0 sub mp1,subst_mp0 sub mp2 with
None,None ->raise No_subst
| Some (mp',resolve),None -> User,(make_con_equiv mp' mp2 dir l), resolve
| None, Some(mp',resolve)-> Canonical,(make_con_equiv mp1 mp' dir l), resolve
| Some(mp1',resolve1),Some(mp2',resolve2)->Canonical,
(make_con_equiv mp1' mp2' dir l), resolve2
in
match constant_of_delta_with_inline resolve con' with
None ->begin
match side with
|User ->
let con = constant_of_delta resolve con' in
Some (Const con)
|Canonical ->
let con = constant_of_delta2 resolve con' in
Some (Const con)
end
| t -> t
with No_subst -> Some (Const con)
let rec map_kn f f' c =
let func = map_kn f f' in
match c with
| Const kn ->
(match f' kn with
None -> c
| Some const ->const)
| Ind (kn,i) ->
(match f kn with
None -> c
| Some kn' ->
Ind (kn',i))
| Construct ((kn,i),j) ->
(match f kn with
None -> c
| Some kn' ->
Construct ((kn',i),j))
| Case (ci,p,ct,l) ->
let ci_ind =
let (kn,i) = ci.ci_ind in
(match f kn with None -> ci.ci_ind | Some kn' -> kn',i ) in
let p' = func p in
let ct' = func ct in
let l' = array_smartmap func l in
if (ci.ci_ind==ci_ind && p'==p
&& l'==l && ct'==ct)then c
else
Case ({ci with ci_ind = ci_ind},
p',ct', l')
| Cast (ct,k,t) ->
let ct' = func ct in
let t'= func t in
if (t'==t && ct'==ct) then c
else Cast (ct', k, t')
| Prod (na,t,ct) ->
let ct' = func ct in
let t'= func t in
if (t'==t && ct'==ct) then c
else Prod (na, t', ct')
| Lambda (na,t,ct) ->
let ct' = func ct in
let t'= func t in
if (t'==t && ct'==ct) then c
else Lambda (na, t', ct')
| LetIn (na,b,t,ct) ->
let ct' = func ct in
let t'= func t in
let b'= func b in
if (t'==t && ct'==ct && b==b') then c
else LetIn (na, b', t', ct')
| App (ct,l) ->
let ct' = func ct in
let l' = array_smartmap func l in
if (ct'== ct && l'==l) then c
else App (ct',l')
| Evar (e,l) ->
let l' = array_smartmap func l in
if (l'==l) then c
else Evar (e,l')
| Fix (ln,(lna,tl,bl)) ->
let tl' = array_smartmap func tl in
let bl' = array_smartmap func bl in
if (bl == bl'&& tl == tl') then c
else Fix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl)) ->
let tl' = array_smartmap func tl in
let bl' = array_smartmap func bl in
if (bl == bl'&& tl == tl') then c
else CoFix (ln,(lna,tl',bl'))
| _ -> c
let subst_mps sub =
map_kn (subst_mind0 sub) (subst_con0 sub)
type 'a lazy_subst =
| LSval of 'a
| LSlazy of substitution list * 'a
type 'a substituted = 'a lazy_subst ref
let val_substituted val_a =
val_ref
(val_sum "constr_substituted" 0
[|[|val_a|];[|val_list val_subst;val_a|]|])
let from_val a = ref (LSval a)
let rec replace_mp_in_mp mpfrom mpto mp =
match mp with
| _ when mp = mpfrom -> mpto
| MPdot (mp1,l) ->
let mp1' = replace_mp_in_mp mpfrom mpto mp1 in
if mp1==mp1' then mp
else MPdot (mp1',l)
| _ -> mp
let rec mp_in_mp mp mp1 =
match mp1 with
| _ when mp1 = mp -> true
| MPdot (mp2,l) -> mp_in_mp mp mp2
| _ -> false
let mp_in_key mp key =
match key with
| MP mp1 ->
mp_in_mp mp mp1
| KN kn ->
let mp1,dir,l = repr_kn kn in
mp_in_mp mp mp1
let subset_prefixed_by mp resolver =
let prefixmp key hint resolv =
if mp_in_key mp key then
Deltamap.add key hint resolv
else
resolv
in
Deltamap.fold prefixmp resolver empty_delta_resolver
let subst_dom_delta_resolver subst resolver =
let apply_subst key hint resolver =
match key with
(MP mp) ->
Deltamap.add (MP (subst_mp subst mp)) hint resolver
| (KN kn) ->
Deltamap.add (KN (subst_kn subst kn)) hint resolver
in
Deltamap.fold apply_subst resolver empty_delta_resolver
let subst_mp_delta sub mp key=
match subst_mp0 sub mp with
None -> empty_delta_resolver,mp
| Some (mp',resolve) ->
let mp1 = find_prefix resolve mp' in
let resolve1 = subset_prefixed_by mp1 resolve in
match key with
MP mpk ->
(subst_dom_delta_resolver
(map_mp mp1 mpk) resolve1),mp1
| _ -> anomaly "Mod_subst: Bad association in resolver"
let subst_codom_delta_resolver subst resolver =
let apply_subst key hint resolver =
match hint with
Prefix_equiv mp ->
let derived_resolve,mpnew = subst_mp_delta subst mp key in
Deltamap.fold Deltamap.add derived_resolve
(Deltamap.add key (Prefix_equiv mpnew) resolver)
| (Equiv kn) ->
Deltamap.add key (Equiv (subst_kn_delta subst kn)) resolver
| Inline None ->
Deltamap.add key hint resolver
| Inline (Some t) ->
Deltamap.add key (Inline (Some (subst_mps subst t))) resolver
in
Deltamap.fold apply_subst resolver empty_delta_resolver
let subst_dom_codom_delta_resolver subst resolver =
subst_dom_delta_resolver subst
(subst_codom_delta_resolver subst resolver)
let update_delta_resolver resolver1 resolver2 =
let apply_res key hint res =
try
match hint with
Prefix_equiv mp ->
let new_hint =
Prefix_equiv (find_prefix resolver2 mp)
in Deltamap.add key new_hint res
| Equiv kn ->
let new_hint =
Equiv (solve_delta_kn resolver2 kn)
in Deltamap.add key new_hint res
| _ -> Deltamap.add key hint res
with Not_found ->
Deltamap.add key hint res
in
Deltamap.fold apply_res resolver1 empty_delta_resolver
let add_delta_resolver resolver1 resolver2 =
if resolver1 == resolver2 then
resolver2
else
Deltamap.fold Deltamap.add (update_delta_resolver resolver1 resolver2)
resolver2
let substition_prefixed_by k mp subst =
let prefixmp key (mp_to,reso) sub =
match key with
| MPI mpk ->
if mp_in_mp mp mpk && mp <> mpk then
let new_key = replace_mp_in_mp mp k mpk in
Umap.add (MPI new_key) (mp_to,reso) sub
else
sub
| _ -> sub
in
Umap.fold prefixmp subst empty_subst
let join (subst1 : substitution) (subst2 : substitution) =
let apply_subst key (mp,resolve) res =
let mp',resolve' =
match subst_mp0 subst2 mp with
None -> mp, None
| Some (mp',resolve') -> mp'
,Some resolve' in
let resolve'' : delta_resolver =
match resolve' with
Some res ->
add_delta_resolver
(subst_dom_codom_delta_resolver subst2 resolve) res
| None ->
subst_codom_delta_resolver subst2 resolve
in
let k = match key with MBI mp -> MPbound mp | MPI mp -> mp in
let prefixed_subst = substition_prefixed_by k mp subst2 in
Umap.fold Umap.add prefixed_subst
(Umap.add key (mp',resolve'') res) in
let subst = Umap.fold apply_subst subst1 empty_subst in
(Umap.fold Umap.add subst2 subst)
let force fsubst r =
match !r with
| LSval a -> a
| LSlazy(s,a) ->
let subst = List.fold_left join empty_subst (List.rev s) in
let a' = fsubst subst a in
r := LSval a';
a'
let subst_substituted s r =
match !r with
| LSval a -> ref (LSlazy([s],a))
| LSlazy(s',a) ->
ref (LSlazy(s::s',a))
let force_constr = force subst_mps
type constr_substituted = constr substituted
let val_cstr_subst = val_substituted val_constr
let subst_constr_subst = subst_substituted
type constant_body = {
const_hyps : section_context; (* New: younger hyp at top *)
const_body : constr_substituted option;
const_type : constant_type;
const_body_code : to_patch_substituted;
(* const_type_code : Cemitcodes.to_patch; *)
const_constraints : Univ.constraints;
const_opaque : bool;
const_inline : bool}
let val_cb = val_tuple "constant_body"
[|val_nctxt;
val_opt val_cstr_subst;
val_cst_type;
no_val;
val_cstrs;
val_bool;
val_bool |]
let subst_rel_declaration sub (id,copt,t as x) =
let copt' = Option.smartmap (subst_mps sub) copt in
let t' = subst_mps sub t in
if copt == copt' & t == t' then x else (id,copt',t')
let subst_rel_context sub = list_smartmap (subst_rel_declaration sub)
type recarg =
| Norec
| Mrec of int
| Imbr of inductive
let val_recarg = val_sum "recarg" 1 (* Norec *)
[|[|val_int|] (* Mrec *);[|val_ind|] (* Imbr *)|]
let subst_recarg sub r = match r with
| Norec | Mrec _ -> r
| Imbr (kn,i) -> let kn' = subst_ind sub kn in
if kn==kn' then r else Imbr (kn',i)
type wf_paths = recarg Rtree.t
let val_wfp = val_rec_sum "wf_paths" 0
(fun val_wfp ->
[|[|val_int;val_int|]; (* Rtree.Param *)
[|val_recarg;val_array val_wfp|]; (* Rtree.Node *)
[|val_int;val_array val_wfp|] (* Rtree.Rec *)
|])
let mk_norec = Rtree.mk_node Norec [||]
let mk_paths r recargs =
Rtree.mk_node r
(Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs)
let dest_recarg p = fst (Rtree.dest_node p)
let dest_subterms p =
let (_,cstrs) = Rtree.dest_node p in
Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs
let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p
(**********************************************************************)
(* Representation of mutual inductive types in the kernel *)
(*
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1
...
with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
*)
type monomorphic_inductive_arity = {
mind_user_arity : constr;
mind_sort : sorts;
}
let val_mono_ind_arity =
val_tuple"monomorphic_inductive_arity"[|val_constr;val_sort|]
type inductive_arity =
| Monomorphic of monomorphic_inductive_arity
| Polymorphic of polymorphic_arity
let val_ind_arity = val_sum "inductive_arity" 0
[|[|val_mono_ind_arity|];[|val_pol_arity|]|]
type one_inductive_body = {
(* Primitive datas *)
(* Name of the type: [Ii] *)
mind_typename : identifier;
(* Arity context of [Ii] with parameters: [forall params, Ui] *)
mind_arity_ctxt : rel_context;
(* Arity sort, original user arity, and allowed elim sorts, if monomorphic *)
mind_arity : inductive_arity;
(* Names of the constructors: [cij] *)
mind_consnames : identifier array;
(* Types of the constructors with parameters: [forall params, Tij],
where the Ik are replaced by de Bruijn index in the context
I1:forall params, U1 .. In:forall params, Un *)
mind_user_lc : constr array;
(* Derived datas *)
(* Number of expected real arguments of the type (no let, no params) *)
mind_nrealargs : int;
(* Length of realargs context (with let, no params) *)
mind_nrealargs_ctxt : int;
(* List of allowed elimination sorts *)
mind_kelim : sorts_family list;
(* Head normalized constructor types so that their conclusion is atomic *)
mind_nf_lc : constr array;
(* Length of the signature of the constructors (with let, w/o params) *)
mind_consnrealdecls : int array;
(* Signature of recursive arguments in the constructors *)
mind_recargs : wf_paths;
(* Datas for bytecode compilation *)
(* number of constant constructor *)
mind_nb_constant : int;
(* number of no constant constructor *)
mind_nb_args : int;
mind_reloc_tbl : reloc_table;
}
let val_one_ind = val_tuple "one_inductive_body"
[|val_id;val_rctxt;val_ind_arity;val_array val_id;val_array val_constr;
val_int;val_int;val_list val_sortfam;val_array val_constr;val_array val_int;
val_wfp;val_int;val_int;no_val|]
type mutual_inductive_body = {
(* The component of the mutual inductive block *)
mind_packets : one_inductive_body array;
(* Whether the inductive type has been declared as a record *)
mind_record : bool;
(* Whether the type is inductive or coinductive *)
mind_finite : bool;
(* Number of types in the block *)
mind_ntypes : int;
(* Section hypotheses on which the block depends *)
mind_hyps : section_context;
(* Number of expected parameters *)
mind_nparams : int;
(* Number of recursively uniform (i.e. ordinary) parameters *)
mind_nparams_rec : int;
(* The context of parameters (includes let-in declaration) *)
mind_params_ctxt : rel_context;
(* Universes constraints enforced by the inductive declaration *)
mind_constraints : Univ.constraints;
}
let val_ind_pack = val_tuple "mutual_inductive_body"
[|val_array val_one_ind;val_bool;val_bool;val_int;val_nctxt;
val_int; val_int; val_rctxt;val_cstrs|]
let subst_arity sub = function
| NonPolymorphicType s -> NonPolymorphicType (subst_mps sub s)
| PolymorphicArity (ctx,s) -> PolymorphicArity (subst_rel_context sub ctx,s)
(* TODO: should be changed to non-coping after Term.subst_mps *)
let subst_const_body sub cb = {
const_hyps = (assert (cb.const_hyps=[]); []);
const_body = Option.map (subst_constr_subst sub) cb.const_body;
const_type = subst_arity sub cb.const_type;
const_body_code = (*Cemitcodes.subst_to_patch_subst sub*) cb.const_body_code;
(*const_type_code = Cemitcodes.subst_to_patch sub cb.const_type_code;*)
const_constraints = cb.const_constraints;
const_opaque = cb.const_opaque;
const_inline = cb.const_inline}
let subst_arity sub = function
| Monomorphic s ->
Monomorphic {
mind_user_arity = subst_mps sub s.mind_user_arity;
mind_sort = s.mind_sort;
}
| Polymorphic s as x -> x
let subst_mind_packet sub mbp =
{ mind_consnames = mbp.mind_consnames;
mind_consnrealdecls = mbp.mind_consnrealdecls;
mind_typename = mbp.mind_typename;
mind_nf_lc = array_smartmap (subst_mps sub) mbp.mind_nf_lc;
mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt;
mind_arity = subst_arity sub mbp.mind_arity;
mind_user_lc = array_smartmap (subst_mps sub) mbp.mind_user_lc;
mind_nrealargs = mbp.mind_nrealargs;
mind_nrealargs_ctxt = mbp.mind_nrealargs_ctxt;
mind_kelim = mbp.mind_kelim;
mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*);
mind_nb_constant = mbp.mind_nb_constant;
mind_nb_args = mbp.mind_nb_args;
mind_reloc_tbl = mbp.mind_reloc_tbl }
let subst_mind sub mib =
{ mind_record = mib.mind_record ;
mind_finite = mib.mind_finite ;
mind_ntypes = mib.mind_ntypes ;
mind_hyps = (assert (mib.mind_hyps=[]); []) ;
mind_nparams = mib.mind_nparams;
mind_nparams_rec = mib.mind_nparams_rec;
mind_params_ctxt =
map_rel_context (subst_mps sub) mib.mind_params_ctxt;
mind_packets = array_smartmap (subst_mind_packet sub) mib.mind_packets ;
mind_constraints = mib.mind_constraints }
(* Modules *)
(* Whenever you change these types, please do update the validation
functions below *)
type structure_field_body =
| SFBconst of constant_body
| SFBmind of mutual_inductive_body
| SFBmodule of module_body
| SFBmodtype of module_type_body
and structure_body = (label * structure_field_body) list
and struct_expr_body =
| SEBident of module_path
| SEBfunctor of mod_bound_id * module_type_body * struct_expr_body
| SEBapply of struct_expr_body * struct_expr_body * Univ.constraints
| SEBstruct of structure_body
| SEBwith of struct_expr_body * with_declaration_body
and with_declaration_body =
With_module_body of identifier list * module_path
| With_definition_body of identifier list * constant_body
and module_body =
{ mod_mp : module_path;
mod_expr : struct_expr_body option;
mod_type : struct_expr_body;
mod_type_alg : struct_expr_body option;
mod_constraints : Univ.constraints;
mod_delta : delta_resolver;
mod_retroknowledge : action list}
and module_type_body =
{ typ_mp : module_path;
typ_expr : struct_expr_body;
typ_expr_alg : struct_expr_body option ;
typ_constraints : Univ.constraints;
typ_delta :delta_resolver}
(* the validation functions: *)
let rec val_sfb o = val_sum "struct_field_body" 0
[|[|val_cb|]; (* SFBconst *)
[|val_ind_pack|]; (* SFBmind *)
[|val_module|]; (* SFBmodule *)
[|val_modtype|] (* SFBmodtype *)
|] o
and val_sb o = val_list (val_tuple"label*sfb"[|val_id;val_sfb|]) o
and val_seb o = val_sum "struct_expr_body" 0
[|[|val_mp|]; (* SEBident *)
[|val_uid;val_modtype;val_seb|]; (* SEBfunctor *)
[|val_seb;val_seb;val_cstrs|]; (* SEBapply *)
[|val_sb|]; (* SEBstruct *)
[|val_seb;val_with|] (* SEBwith *)
|] o
and val_with o = val_sum "with_declaration_body" 0
[|[|val_list val_id;val_mp|];
[|val_list val_id;val_cb|]|] o
and val_module o = val_tuple "module_body"
[|val_mp;val_opt val_seb;val_seb;
val_opt val_seb;val_cstrs;val_res;no_val|] o
and val_modtype o = val_tuple "module_type_body"
[|val_mp;val_seb;val_opt val_seb;val_cstrs;val_res|] o
let rec subst_with_body sub = function
| With_module_body(id,mp) ->
With_module_body(id,subst_mp sub mp)
| With_definition_body(id,cb) ->
With_definition_body( id,subst_const_body sub cb)
and subst_modtype sub mtb=
let typ_expr' = subst_struct_expr sub mtb.typ_expr in
let typ_alg' =
Option.smartmap
(subst_struct_expr sub) mtb.typ_expr_alg in
let mp = subst_mp sub mtb.typ_mp
in
if typ_expr'==mtb.typ_expr &&
typ_alg'==mtb.typ_expr_alg && mp==mtb.typ_mp then
mtb
else
{mtb with
typ_mp = mp;
typ_expr = typ_expr';
typ_expr_alg = typ_alg'}
and subst_structure sub sign =
let subst_body = function
SFBconst cb ->
SFBconst (subst_const_body sub cb)
| SFBmind mib ->
SFBmind (subst_mind sub mib)
| SFBmodule mb ->
SFBmodule (subst_module sub mb)
| SFBmodtype mtb ->
SFBmodtype (subst_modtype sub mtb)
in
List.map (fun (l,b) -> (l,subst_body b)) sign
and subst_module sub mb =
let mtb' = subst_struct_expr sub mb.mod_type in
let typ_alg' = Option.smartmap
(subst_struct_expr sub ) mb.mod_type_alg in
let me' = Option.smartmap
(subst_struct_expr sub) mb.mod_expr in
let mp = subst_mp sub mb.mod_mp in
if mtb'==mb.mod_type && mb.mod_expr == me'
&& mp == mb.mod_mp
then mb else
{ mb with
mod_mp = mp;
mod_expr = me';
mod_type_alg = typ_alg';
mod_type=mtb'}
and subst_struct_expr sub = function
| SEBident mp -> SEBident (subst_mp sub mp)
| SEBfunctor (mbid, mtb, meb') ->
SEBfunctor(mbid,subst_modtype sub mtb
,subst_struct_expr sub meb')
| SEBstruct (str)->
SEBstruct( subst_structure sub str)
| SEBapply (meb1,meb2,cst)->
SEBapply(subst_struct_expr sub meb1,
subst_struct_expr sub meb2,
cst)
| SEBwith (meb,wdb)->
SEBwith(subst_struct_expr sub meb,
subst_with_body sub wdb)
|