1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: closure.ml 9983 2007-07-12 17:15:22Z barras $ *)
open Util
open Pp
open Term
open Names
open Esubst
open Environ
let stats = ref false
let share = ref true
(* Profiling *)
let beta = ref 0
let delta = ref 0
let zeta = ref 0
let evar = ref 0
let iota = ref 0
let prune = ref 0
let reset () =
beta := 0; delta := 0; zeta := 0; evar := 0; iota := 0; prune := 0
let stop() =
msgnl (str "[Reds: beta=" ++ int !beta ++ str" delta=" ++ int !delta ++
str" zeta=" ++ int !zeta ++ str" evar=" ++ int !evar ++
str" iota=" ++ int !iota ++ str" prune=" ++ int !prune ++ str"]")
let incr_cnt red cnt =
if red then begin
if !stats then incr cnt;
true
end else
false
let with_stats c =
if !stats then begin
reset();
let r = Lazy.force c in
stop();
r
end else
Lazy.force c
type transparent_state = Idpred.t * Cpred.t
let all_opaque = (Idpred.empty, Cpred.empty)
let all_transparent = (Idpred.full, Cpred.full)
module type RedFlagsSig = sig
type reds
type red_kind
val fBETA : red_kind
val fDELTA : red_kind
val fIOTA : red_kind
val fZETA : red_kind
val fCONST : constant -> red_kind
val fVAR : identifier -> red_kind
val no_red : reds
val red_add : reds -> red_kind -> reds
val red_sub : reds -> red_kind -> reds
val red_add_transparent : reds -> transparent_state -> reds
val mkflags : red_kind list -> reds
val red_set : reds -> red_kind -> bool
val red_get_const : reds -> bool * evaluable_global_reference list
end
module RedFlags = (struct
(* [r_const=(true,cl)] means all constants but those in [cl] *)
(* [r_const=(false,cl)] means only those in [cl] *)
(* [r_delta=true] just mean [r_const=(true,[])] *)
type reds = {
r_beta : bool;
r_delta : bool;
r_const : transparent_state;
r_zeta : bool;
r_evar : bool;
r_iota : bool }
type red_kind = BETA | DELTA | IOTA | ZETA
| CONST of constant | VAR of identifier
let fBETA = BETA
let fDELTA = DELTA
let fIOTA = IOTA
let fZETA = ZETA
let fCONST kn = CONST kn
let fVAR id = VAR id
let no_red = {
r_beta = false;
r_delta = false;
r_const = all_opaque;
r_zeta = false;
r_evar = false;
r_iota = false }
let red_add red = function
| BETA -> { red with r_beta = true }
| DELTA -> { red with r_delta = true; r_const = all_transparent }
| CONST kn ->
let (l1,l2) = red.r_const in
{ red with r_const = l1, Cpred.add kn l2 }
| IOTA -> { red with r_iota = true }
| ZETA -> { red with r_zeta = true }
| VAR id ->
let (l1,l2) = red.r_const in
{ red with r_const = Idpred.add id l1, l2 }
let red_sub red = function
| BETA -> { red with r_beta = false }
| DELTA -> { red with r_delta = false }
| CONST kn ->
let (l1,l2) = red.r_const in
{ red with r_const = l1, Cpred.remove kn l2 }
| IOTA -> { red with r_iota = false }
| ZETA -> { red with r_zeta = false }
| VAR id ->
let (l1,l2) = red.r_const in
{ red with r_const = Idpred.remove id l1, l2 }
let red_add_transparent red tr =
{ red with r_const = tr }
let mkflags = List.fold_left red_add no_red
let red_set red = function
| BETA -> incr_cnt red.r_beta beta
| CONST kn ->
let (_,l) = red.r_const in
let c = Cpred.mem kn l in
incr_cnt c delta
| VAR id -> (* En attendant d'avoir des kn pour les Var *)
let (l,_) = red.r_const in
let c = Idpred.mem id l in
incr_cnt c delta
| ZETA -> incr_cnt red.r_zeta zeta
| IOTA -> incr_cnt red.r_iota iota
| DELTA -> (* Used for Rel/Var defined in context *)
incr_cnt red.r_delta delta
let red_get_const red =
let p1,p2 = red.r_const in
let (b1,l1) = Idpred.elements p1 in
let (b2,l2) = Cpred.elements p2 in
if b1=b2 then
let l1' = List.map (fun x -> EvalVarRef x) l1 in
let l2' = List.map (fun x -> EvalConstRef x) l2 in
(b1, l1' @ l2')
else error "unrepresentable pair of predicate"
end : RedFlagsSig)
open RedFlags
let betadeltaiota = mkflags [fBETA;fDELTA;fZETA;fIOTA]
let betadeltaiotanolet = mkflags [fBETA;fDELTA;fIOTA]
let betaiota = mkflags [fBETA;fIOTA]
let beta = mkflags [fBETA]
let betaiotazeta = mkflags [fBETA;fIOTA;fZETA]
let unfold_red kn =
let flag = match kn with
| EvalVarRef id -> fVAR id
| EvalConstRef kn -> fCONST kn
in (* Remove fZETA for finer behaviour ? *)
mkflags [fBETA;flag;fIOTA;fZETA]
(************************* Obsolète
(* [r_const=(true,cl)] means all constants but those in [cl] *)
(* [r_const=(false,cl)] means only those in [cl] *)
type reds = {
r_beta : bool;
r_const : bool * constant_path list * identifier list;
r_zeta : bool;
r_evar : bool;
r_iota : bool }
let betadeltaiota_red = {
r_beta = true;
r_const = true,[],[];
r_zeta = true;
r_evar = true;
r_iota = true }
let betaiota_red = {
r_beta = true;
r_const = false,[],[];
r_zeta = false;
r_evar = false;
r_iota = true }
let beta_red = {
r_beta = true;
r_const = false,[],[];
r_zeta = false;
r_evar = false;
r_iota = false }
let no_red = {
r_beta = false;
r_const = false,[],[];
r_zeta = false;
r_evar = false;
r_iota = false }
let betaiotazeta_red = {
r_beta = true;
r_const = false,[],[];
r_zeta = true;
r_evar = false;
r_iota = true }
let unfold_red kn =
let c = match kn with
| EvalVarRef id -> false,[],[id]
| EvalConstRef kn -> false,[kn],[]
in {
r_beta = true;
r_const = c;
r_zeta = true; (* false for finer behaviour ? *)
r_evar = false;
r_iota = true }
(* Sets of reduction kinds.
Main rule: delta implies all consts (both global (= by
kernel_name) and local (= by Rel or Var)), all evars, and zeta (= letin's).
Rem: reduction of a Rel/Var bound to a term is Delta, but reduction of
a LetIn expression is Letin reduction *)
type red_kind =
BETA | DELTA | ZETA | IOTA
| CONST of constant_path list | CONSTBUT of constant_path list
| VAR of identifier | VARBUT of identifier
let rec red_add red = function
| BETA -> { red with r_beta = true }
| DELTA ->
(match red.r_const with
| _,_::_,[] | _,[],_::_ -> error "Conflict in the reduction flags"
| _ -> { red with r_const = true,[],[]; r_zeta = true; r_evar = true })
| CONST cl ->
(match red.r_const with
| true,_,_ -> error "Conflict in the reduction flags"
| _,l1,l2 -> { red with r_const = false, list_union cl l1, l2 })
| CONSTBUT cl ->
(match red.r_const with
| false,_::_,_ | false,_,_::_ ->
error "Conflict in the reduction flags"
| _,l1,l2 ->
{ red with r_const = true, list_union cl l1, l2;
r_zeta = true; r_evar = true })
| IOTA -> { red with r_iota = true }
| ZETA -> { red with r_zeta = true }
| VAR id ->
(match red.r_const with
| true,_,_ -> error "Conflict in the reduction flags"
| _,l1,l2 -> { red with r_const = false, l1, list_union [id] l2 })
| VARBUT cl ->
(match red.r_const with
| false,_::_,_ | false,_,_::_ ->
error "Conflict in the reduction flags"
| _,l1,l2 ->
{ red with r_const = true, l1, list_union [cl] l2;
r_zeta = true; r_evar = true })
let red_delta_set red =
let b,_,_ = red.r_const in b
let red_local_const = red_delta_set
(* to know if a redex is allowed, only a subset of red_kind is used ... *)
let red_set red = function
| BETA -> incr_cnt red.r_beta beta
| CONST [kn] ->
let (b,l,_) = red.r_const in
let c = List.mem kn l in
incr_cnt ((b & not c) or (c & not b)) delta
| VAR id -> (* En attendant d'avoir des kn pour les Var *)
let (b,_,l) = red.r_const in
let c = List.mem id l in
incr_cnt ((b & not c) or (c & not b)) delta
| ZETA -> incr_cnt red.r_zeta zeta
| EVAR -> incr_cnt red.r_zeta evar
| IOTA -> incr_cnt red.r_iota iota
| DELTA -> red_delta_set red (*Used for Rel/Var defined in context*)
(* Not for internal use *)
| CONST _ | CONSTBUT _ | VAR _ | VARBUT _ -> failwith "not implemented"
(* Gives the constant list *)
let red_get_const red =
let b,l1,l2 = red.r_const in
let l1' = List.map (fun x -> EvalConstRef x) l1 in
let l2' = List.map (fun x -> EvalVarRef x) l2 in
b, l1' @ l2'
fin obsolète **************)
(* specification of the reduction function *)
(* Flags of reduction and cache of constants: 'a is a type that may be
* mapped to constr. 'a infos implements a cache for constants and
* abstractions, storing a representation (of type 'a) of the body of
* this constant or abstraction.
* * i_tab is the cache table of the results
* * i_repr is the function to get the representation from the current
* state of the cache and the body of the constant. The result
* is stored in the table.
* * i_rels = (4,[(1,c);(3,d)]) means there are 4 free rel variables
* and only those with index 1 and 3 have bodies which are c and d resp.
* * i_vars is the list of _defined_ named variables.
*
* ref_value_cache searchs in the tab, otherwise uses i_repr to
* compute the result and store it in the table. If the constant can't
* be unfolded, returns None, but does not store this failure. * This
* doesn't take the RESET into account. You mustn't keep such a table
* after a Reset. * This type is not exported. Only its two
* instantiations (cbv or lazy) are.
*)
type table_key =
| ConstKey of constant
| VarKey of identifier
| RelKey of int
type 'a infos = {
i_flags : reds;
i_repr : 'a infos -> constr -> 'a;
i_env : env;
i_rels : int * (int * constr) list;
i_vars : (identifier * constr) list;
i_tab : (table_key, 'a) Hashtbl.t }
let info_flags info = info.i_flags
let ref_value_cache info ref =
try
Some (Hashtbl.find info.i_tab ref)
with Not_found ->
try
let body =
match ref with
| RelKey n ->
let (s,l) = info.i_rels in lift n (List.assoc (s-n) l)
| VarKey id -> List.assoc id info.i_vars
| ConstKey cst -> constant_value info.i_env cst
in
let v = info.i_repr info body in
Hashtbl.add info.i_tab ref v;
Some v
with
| Not_found (* List.assoc *)
| NotEvaluableConst _ (* Const *)
-> None
let defined_vars flags env =
(* if red_local_const (snd flags) then*)
fold_named_context
(fun (id,b,_) e ->
match b with
| None -> e
| Some body -> (id, body)::e)
(named_context env) ~init:[]
(* else []*)
let defined_rels flags env =
(* if red_local_const (snd flags) then*)
fold_rel_context
(fun (id,b,t) (i,subs) ->
match b with
| None -> (i+1, subs)
| Some body -> (i+1, (i,body) :: subs))
(rel_context env) ~init:(0,[])
(* else (0,[])*)
let mind_equiv_infos info = mind_equiv info.i_env
let eq_table_key k1 k2 =
match k1,k2 with
| ConstKey con1 ,ConstKey con2 -> eq_con_chk con1 con2
| _,_ -> k1=k2
let create mk_cl flgs env =
{ i_flags = flgs;
i_repr = mk_cl;
i_env = env;
i_rels = defined_rels flgs env;
i_vars = defined_vars flgs env;
i_tab = Hashtbl.create 17 }
(**********************************************************************)
(* Lazy reduction: the one used in kernel operations *)
(* type of shared terms. fconstr and frterm are mutually recursive.
* Clone of the constr structure, but completely mutable, and
* annotated with reduction state (reducible or not).
* - FLIFT is a delayed shift; allows sharing between 2 lifted copies
* of a given term.
* - FCLOS is a delayed substitution applied to a constr
* - FLOCKED is used to erase the content of a reference that must
* be updated. This is to allow the garbage collector to work
* before the term is computed.
*)
(* Norm means the term is fully normalized and cannot create a redex
when substituted
Cstr means the term is in head normal form and that it can
create a redex when substituted (i.e. constructor, fix, lambda)
Whnf means we reached the head normal form and that it cannot
create a redex when substituted
Red is used for terms that might be reduced
*)
type red_state = Norm | Cstr | Whnf | Red
let neutr = function
| (Whnf|Norm) -> Whnf
| (Red|Cstr) -> Red
type fconstr = {
mutable norm: red_state;
mutable term: fterm }
and fterm =
| FRel of int
| FAtom of constr (* Metas and Sorts *)
| FCast of fconstr * cast_kind * fconstr
| FFlex of table_key
| FInd of inductive
| FConstruct of constructor
| FApp of fconstr * fconstr array
| FFix of fixpoint * fconstr subs
| FCoFix of cofixpoint * fconstr subs
| FCases of case_info * fconstr * fconstr * fconstr array
| FLambda of int * (name * constr) list * constr * fconstr subs
| FProd of name * fconstr * fconstr
| FLetIn of name * fconstr * fconstr * constr * fconstr subs
| FEvar of existential_key * fconstr array
| FLIFT of int * fconstr
| FCLOS of constr * fconstr subs
| FLOCKED
let fterm_of v = v.term
let set_norm v = v.norm <- Norm
let is_val v = v.norm = Norm
let mk_atom c = {norm=Norm;term=FAtom c}
(* Could issue a warning if no is still Red, pointing out that we loose
sharing. *)
let update v1 (no,t) =
if !share then
(v1.norm <- no;
v1.term <- t;
v1)
else {norm=no;term=t}
(**********************************************************************)
(* The type of (machine) stacks (= lambda-bar-calculus' contexts) *)
type stack_member =
| Zapp of fconstr array
| Zcase of case_info * fconstr * fconstr array
| Zfix of fconstr * stack
| Zshift of int
| Zupdate of fconstr
and stack = stack_member list
let empty_stack = []
let append_stack v s =
if Array.length v = 0 then s else
match s with
| Zapp l :: s -> Zapp (Array.append v l) :: s
| _ -> Zapp v :: s
(* Collapse the shifts in the stack *)
let zshift n s =
match (n,s) with
(0,_) -> s
| (_,Zshift(k)::s) -> Zshift(n+k)::s
| _ -> Zshift(n)::s
let rec stack_args_size = function
| Zapp v :: s -> Array.length v + stack_args_size s
| Zshift(_)::s -> stack_args_size s
| Zupdate(_)::s -> stack_args_size s
| _ -> 0
(* When used as an argument stack (only Zapp can appear) *)
let rec decomp_stack = function
| Zapp v :: s ->
(match Array.length v with
0 -> decomp_stack s
| 1 -> Some (v.(0), s)
| _ ->
Some (v.(0), (Zapp (Array.sub v 1 (Array.length v - 1)) :: s)))
| _ -> None
let array_of_stack s =
let rec stackrec = function
| [] -> []
| Zapp args :: s -> args :: (stackrec s)
| _ -> assert false
in Array.concat (stackrec s)
let rec stack_assign s p c = match s with
| Zapp args :: s ->
let q = Array.length args in
if p >= q then
Zapp args :: stack_assign s (p-q) c
else
(let nargs = Array.copy args in
nargs.(p) <- c;
Zapp nargs :: s)
| _ -> s
let rec stack_tail p s =
if p = 0 then s else
match s with
| Zapp args :: s ->
let q = Array.length args in
if p >= q then stack_tail (p-q) s
else Zapp (Array.sub args p (q-p)) :: s
| _ -> failwith "stack_tail"
let rec stack_nth s p = match s with
| Zapp args :: s ->
let q = Array.length args in
if p >= q then stack_nth s (p-q)
else args.(p)
| _ -> raise Not_found
(* Lifting. Preserves sharing (useful only for cell with norm=Red).
lft_fconstr always create a new cell, while lift_fconstr avoids it
when the lift is 0. *)
let rec lft_fconstr n ft =
match ft.term with
| (FInd _|FConstruct _|FFlex(ConstKey _|VarKey _)) -> ft
| FRel i -> {norm=Norm;term=FRel(i+n)}
| FLambda(k,tys,f,e) -> {norm=Cstr; term=FLambda(k,tys,f,subs_shft(n,e))}
| FFix(fx,e) -> {norm=Cstr; term=FFix(fx,subs_shft(n,e))}
| FCoFix(cfx,e) -> {norm=Cstr; term=FCoFix(cfx,subs_shft(n,e))}
| FLIFT(k,m) -> lft_fconstr (n+k) m
| FLOCKED -> assert false
| _ -> {norm=ft.norm; term=FLIFT(n,ft)}
let lift_fconstr k f =
if k=0 then f else lft_fconstr k f
let lift_fconstr_vect k v =
if k=0 then v else Array.map (fun f -> lft_fconstr k f) v
let clos_rel e i =
match expand_rel i e with
| Inl(n,mt) -> lift_fconstr n mt
| Inr(k,None) -> {norm=Norm; term= FRel k}
| Inr(k,Some p) ->
lift_fconstr (k-p) {norm=Red;term=FFlex(RelKey p)}
(* since the head may be reducible, we might introduce lifts of 0 *)
let compact_stack head stk =
let rec strip_rec depth = function
| Zshift(k)::s -> strip_rec (depth+k) s
| Zupdate(m)::s ->
(* Be sure to create a new cell otherwise sharing would be
lost by the update operation *)
let h' = lft_fconstr depth head in
let _ = update m (h'.norm,h'.term) in
strip_rec depth s
| stk -> zshift depth stk in
strip_rec 0 stk
(* Put an update mark in the stack, only if needed *)
let zupdate m s =
if !share & m.norm = Red
then
let s' = compact_stack m s in
let _ = m.term <- FLOCKED in
Zupdate(m)::s'
else s
(* Closure optimization: *)
let rec compact_constr (lg, subs as s) c k =
match c with
Rel i ->
if i < k then c,s else
(try Rel (k + lg - list_index (i-k+1) subs), (lg,subs)
with Not_found -> Rel (k+lg), (lg+1, (i-k+1)::subs))
| (Sort _|Var _|Meta _|Ind _|Const _|Construct _) -> c,s
| Evar(ev,v) ->
let (v',s) = compact_vect s v k in
if v==v' then c,s else Evar(ev,v'),s
| Cast(a,ck,b) ->
let (a',s) = compact_constr s a k in
let (b',s) = compact_constr s b k in
if a==a' && b==b' then c,s else Cast(a', ck, b'), s
| App(f,v) ->
let (f',s) = compact_constr s f k in
let (v',s) = compact_vect s v k in
if f==f' && v==v' then c,s else App(f',v'), s
| Lambda(n,a,b) ->
let (a',s) = compact_constr s a k in
let (b',s) = compact_constr s b (k+1) in
if a==a' && b==b' then c,s else Lambda(n,a',b'), s
| Prod(n,a,b) ->
let (a',s) = compact_constr s a k in
let (b',s) = compact_constr s b (k+1) in
if a==a' && b==b' then c,s else Prod(n,a',b'), s
| LetIn(n,a,ty,b) ->
let (a',s) = compact_constr s a k in
let (ty',s) = compact_constr s ty k in
let (b',s) = compact_constr s b (k+1) in
if a==a' && ty==ty' && b==b' then c,s else LetIn(n,a',ty',b'), s
| Fix(fi,(na,ty,bd)) ->
let (ty',s) = compact_vect s ty k in
let (bd',s) = compact_vect s bd (k+Array.length ty) in
if ty==ty' && bd==bd' then c,s else Fix(fi,(na,ty',bd')), s
| CoFix(i,(na,ty,bd)) ->
let (ty',s) = compact_vect s ty k in
let (bd',s) = compact_vect s bd (k+Array.length ty) in
if ty==ty' && bd==bd' then c,s else CoFix(i,(na,ty',bd')), s
| Case(ci,p,a,br) ->
let (p',s) = compact_constr s p k in
let (a',s) = compact_constr s a k in
let (br',s) = compact_vect s br k in
if p==p' && a==a' && br==br' then c,s else Case(ci,p',a',br'),s
and compact_vect s v k = compact_v [] s v k (Array.length v - 1)
and compact_v acc s v k i =
if i < 0 then
let v' = Array.of_list acc in
if array_for_all2 (==) v v' then v,s else v',s
else
let (a',s') = compact_constr s v.(i) k in
compact_v (a'::acc) s' v k (i-1)
(* Computes the minimal environment of a closure.
Idea: if the subs is not identity, the term will have to be
reallocated entirely (to propagate the substitution). So,
computing the set of free variables does not change the
complexity. *)
let optimise_closure env c =
if is_subs_id env then (env,c) else
let (c',(_,s)) = compact_constr (0,[]) c 1 in
let env' =
Array.map (fun i -> clos_rel env i) (Array.of_list s) in
(subs_cons (env', ESID 0),c')
let mk_lambda env t =
let (env,t) = optimise_closure env t in
let (rvars,t') = decompose_lam t in
FLambda(List.length rvars, List.rev rvars, t', env)
let destFLambda clos_fun t =
match t.term with
FLambda(_,[(na,ty)],b,e) -> (na,clos_fun e ty,clos_fun (subs_lift e) b)
| FLambda(n,(na,ty)::tys,b,e) ->
(na,clos_fun e ty,{norm=Cstr;term=FLambda(n-1,tys,b,subs_lift e)})
| _ -> assert false
(* Optimization: do not enclose variables in a closure.
Makes variable access much faster *)
let mk_clos e t =
match t with
| Rel i -> clos_rel e i
| Var x -> { norm = Red; term = FFlex (VarKey x) }
| Const c -> { norm = Red; term = FFlex (ConstKey c) }
| Meta _ | Sort _ -> { norm = Norm; term = FAtom t }
| Ind kn -> { norm = Norm; term = FInd kn }
| Construct kn -> { norm = Cstr; term = FConstruct kn }
| (CoFix _|Lambda _|Fix _|Prod _|Evar _|App _|Case _|Cast _|LetIn _) ->
{norm = Red; term = FCLOS(t,e)}
let mk_clos_vect env v = Array.map (mk_clos env) v
(* Translate the head constructor of t from constr to fconstr. This
function is parameterized by the function to apply on the direct
subterms.
Could be used insted of mk_clos. *)
let mk_clos_deep clos_fun env t =
match t with
| (Rel _|Ind _|Const _|Construct _|Var _|Meta _ | Sort _) ->
mk_clos env t
| Cast (a,k,b) ->
{ norm = Red;
term = FCast (clos_fun env a, k, clos_fun env b)}
| App (f,v) ->
{ norm = Red;
term = FApp (clos_fun env f, Array.map (clos_fun env) v) }
| Case (ci,p,c,v) ->
{ norm = Red;
term = FCases (ci, clos_fun env p, clos_fun env c,
Array.map (clos_fun env) v) }
| Fix fx ->
{ norm = Cstr; term = FFix (fx, env) }
| CoFix cfx ->
{ norm = Cstr; term = FCoFix(cfx,env) }
| Lambda _ ->
{ norm = Cstr; term = mk_lambda env t }
| Prod (n,t,c) ->
{ norm = Whnf;
term = FProd (n, clos_fun env t, clos_fun (subs_lift env) c) }
| LetIn (n,b,t,c) ->
{ norm = Red;
term = FLetIn (n, clos_fun env b, clos_fun env t, c, env) }
| Evar(ev,args) ->
{ norm = Whnf; term = FEvar(ev,Array.map (clos_fun env) args) }
(* A better mk_clos? *)
let mk_clos2 = mk_clos_deep mk_clos
(* The inverse of mk_clos_deep: move back to constr *)
let rec to_constr constr_fun lfts v =
match v.term with
| FRel i -> Rel (reloc_rel i lfts)
| FFlex (RelKey p) -> Rel (reloc_rel p lfts)
| FFlex (VarKey x) -> Var x
| FAtom c -> exliftn lfts c
| FCast (a,k,b) ->
Cast (constr_fun lfts a, k, constr_fun lfts b)
| FFlex (ConstKey op) -> Const op
| FInd op -> Ind op
| FConstruct op -> Construct op
| FCases (ci,p,c,ve) ->
Case (ci, constr_fun lfts p,
constr_fun lfts c,
Array.map (constr_fun lfts) ve)
| FFix ((op,(lna,tys,bds)),e) ->
let n = Array.length bds in
let ftys = Array.map (mk_clos e) tys in
let fbds = Array.map (mk_clos (subs_liftn n e)) bds in
let lfts' = el_liftn n lfts in
Fix (op, (lna, Array.map (constr_fun lfts) ftys,
Array.map (constr_fun lfts') fbds))
| FCoFix ((op,(lna,tys,bds)),e) ->
let n = Array.length bds in
let ftys = Array.map (mk_clos e) tys in
let fbds = Array.map (mk_clos (subs_liftn n e)) bds in
let lfts' = el_liftn (Array.length bds) lfts in
CoFix (op, (lna, Array.map (constr_fun lfts) ftys,
Array.map (constr_fun lfts') fbds))
| FApp (f,ve) ->
App (constr_fun lfts f,
Array.map (constr_fun lfts) ve)
| FLambda _ ->
let (na,ty,bd) = destFLambda mk_clos2 v in
Lambda (na, constr_fun lfts ty,
constr_fun (el_lift lfts) bd)
| FProd (n,t,c) ->
Prod (n, constr_fun lfts t,
constr_fun (el_lift lfts) c)
| FLetIn (n,b,t,f,e) ->
let fc = mk_clos2 (subs_lift e) f in
LetIn (n, constr_fun lfts b,
constr_fun lfts t,
constr_fun (el_lift lfts) fc)
| FEvar (ev,args) -> Evar(ev,Array.map (constr_fun lfts) args)
| FLIFT (k,a) -> to_constr constr_fun (el_shft k lfts) a
| FCLOS (t,env) ->
let fr = mk_clos2 env t in
let unfv = update v (fr.norm,fr.term) in
to_constr constr_fun lfts unfv
| FLOCKED -> assert false (*mkVar(id_of_string"_LOCK_")*)
(* This function defines the correspondance between constr and
fconstr. When we find a closure whose substitution is the identity,
then we directly return the constr to avoid possibly huge
reallocation. *)
let term_of_fconstr =
let rec term_of_fconstr_lift lfts v =
match v.term with
| FCLOS(t,env) when is_subs_id env & is_lift_id lfts -> t
| FLambda(_,tys,f,e) when is_subs_id e & is_lift_id lfts ->
compose_lam (List.rev tys) f
| FFix(fx,e) when is_subs_id e & is_lift_id lfts -> Fix fx
| FCoFix(cfx,e) when is_subs_id e & is_lift_id lfts -> CoFix cfx
| _ -> to_constr term_of_fconstr_lift lfts v in
term_of_fconstr_lift ELID
(* fstrong applies unfreeze_fun recursively on the (freeze) term and
* yields a term. Assumes that the unfreeze_fun never returns a
* FCLOS term.
let rec fstrong unfreeze_fun lfts v =
to_constr (fstrong unfreeze_fun) lfts (unfreeze_fun v)
*)
let rec zip m stk =
match stk with
| [] -> m
| Zapp args :: s -> zip {norm=neutr m.norm; term=FApp(m, args)} s
| Zcase(ci,p,br)::s ->
let t = FCases(ci, p, m, br) in
zip {norm=neutr m.norm; term=t} s
| Zfix(fx,par)::s ->
zip fx (par @ append_stack [|m|] s)
| Zshift(n)::s ->
zip (lift_fconstr n m) s
| Zupdate(rf)::s ->
zip (update rf (m.norm,m.term)) s
let fapp_stack (m,stk) = zip m stk
(*********************************************************************)
(* The assertions in the functions below are granted because they are
called only when m is a constructor, a cofix
(strip_update_shift_app), a fix (get_nth_arg) or an abstraction
(strip_update_shift, through get_arg). *)
(* optimised for the case where there are no shifts... *)
let strip_update_shift head stk =
assert (head.norm <> Red);
let rec strip_rec h depth = function
| Zshift(k)::s -> strip_rec (lift_fconstr k h) (depth+k) s
| Zupdate(m)::s ->
strip_rec (update m (h.norm,h.term)) depth s
| stk -> (depth,stk) in
strip_rec head 0 stk
(* optimised for the case where there are no shifts... *)
let strip_update_shift_app head stk =
assert (head.norm <> Red);
let rec strip_rec rstk h depth = function
| Zshift(k) as e :: s ->
strip_rec (e::rstk) (lift_fconstr k h) (depth+k) s
| (Zapp args :: s) ->
strip_rec (Zapp args :: rstk)
{norm=h.norm;term=FApp(h,args)} depth s
| Zupdate(m)::s ->
strip_rec rstk (update m (h.norm,h.term)) depth s
| stk -> (depth,List.rev rstk, stk) in
strip_rec [] head 0 stk
let get_nth_arg head n stk =
assert (head.norm <> Red);
let rec strip_rec rstk h depth n = function
| Zshift(k) as e :: s ->
strip_rec (e::rstk) (lift_fconstr k h) (depth+k) n s
| Zapp args::s' ->
let q = Array.length args in
if n >= q
then
strip_rec (Zapp args::rstk)
{norm=h.norm;term=FApp(h,args)} depth (n-q) s'
else
let bef = Array.sub args 0 n in
let aft = Array.sub args (n+1) (q-n-1) in
let stk' =
List.rev (if n = 0 then rstk else (Zapp bef :: rstk)) in
(Some (stk', args.(n)), append_stack aft s')
| Zupdate(m)::s ->
strip_rec rstk (update m (h.norm,h.term)) depth n s
| s -> (None, List.rev rstk @ s) in
strip_rec [] head 0 n stk
(* Beta reduction: look for an applied argument in the stack.
Since the encountered update marks are removed, h must be a whnf *)
let rec get_args n tys f e stk =
match stk with
Zupdate r :: s ->
let _hd = update r (Cstr,FLambda(n,tys,f,e)) in
get_args n tys f e s
| Zshift k :: s ->
get_args n tys f (subs_shft (k,e)) s
| Zapp l :: s ->
let na = Array.length l in
if n == na then (Inl (subs_cons(l,e)),s)
else if n < na then (* more arguments *)
let args = Array.sub l 0 n in
let eargs = Array.sub l n (na-n) in
(Inl (subs_cons(args,e)), Zapp eargs :: s)
else (* more lambdas *)
let etys = list_skipn na tys in
get_args (n-na) etys f (subs_cons(l,e)) s
| _ -> (Inr {norm=Cstr;term=FLambda(n,tys,f,e)}, stk)
(* Iota reduction: extract the arguments to be passed to the Case
branches *)
let rec reloc_rargs_rec depth stk =
match stk with
Zapp args :: s ->
Zapp (lift_fconstr_vect depth args) :: reloc_rargs_rec depth s
| Zshift(k)::s -> if k=depth then s else reloc_rargs_rec (depth-k) s
| _ -> stk
let reloc_rargs depth stk =
if depth = 0 then stk else reloc_rargs_rec depth stk
let rec drop_parameters depth n stk =
match stk with
Zapp args::s ->
let q = Array.length args in
if n > q then drop_parameters depth (n-q) s
else if n = q then reloc_rargs depth s
else
let aft = Array.sub args n (q-n) in
reloc_rargs depth (append_stack aft s)
| Zshift(k)::s -> drop_parameters (depth-k) n s
| [] -> assert (n=0); []
| _ -> assert false (* we know that n < stack_args_size(stk) *)
(* Iota reduction: expansion of a fixpoint.
* Given a fixpoint and a substitution, returns the corresponding
* fixpoint body, and the substitution in which it should be
* evaluated: its first variables are the fixpoint bodies
*
* FCLOS(fix Fi {F0 := T0 .. Fn-1 := Tn-1}, S)
* -> (S. FCLOS(F0,S) . ... . FCLOS(Fn-1,S), Ti)
*)
(* does not deal with FLIFT *)
let contract_fix_vect fix =
let (thisbody, make_body, env, nfix) =
match fix with
| FFix (((reci,i),(_,_,bds as rdcl)),env) ->
(bds.(i),
(fun j -> { norm = Cstr; term = FFix (((reci,j),rdcl),env) }),
env, Array.length bds)
| FCoFix ((i,(_,_,bds as rdcl)),env) ->
(bds.(i),
(fun j -> { norm = Cstr; term = FCoFix ((j,rdcl),env) }),
env, Array.length bds)
| _ -> assert false
in
(subs_cons(Array.init nfix make_body, env), thisbody)
(*********************************************************************)
(* A machine that inspects the head of a term until it finds an
atom or a subterm that may produce a redex (abstraction,
constructor, cofix, letin, constant), or a neutral term (product,
inductive) *)
let rec knh m stk =
match m.term with
| FLIFT(k,a) -> knh a (zshift k stk)
| FCLOS(t,e) -> knht e t (zupdate m stk)
| FLOCKED -> assert false
| FApp(a,b) -> knh a (append_stack b (zupdate m stk))
| FCases(ci,p,t,br) -> knh t (Zcase(ci,p,br)::zupdate m stk)
| FFix(((ri,n),(_,_,_)),_) ->
(match get_nth_arg m ri.(n) stk with
(Some(pars,arg),stk') -> knh arg (Zfix(m,pars)::stk')
| (None, stk') -> (m,stk'))
| FCast(t,_,_) -> knh t stk
(* cases where knh stops *)
| (FFlex _|FLetIn _|FConstruct _|FEvar _|
FCoFix _|FLambda _|FRel _|FAtom _|FInd _|FProd _) ->
(m, stk)
(* The same for pure terms *)
and knht e t stk =
match t with
| App(a,b) ->
knht e a (append_stack (mk_clos_vect e b) stk)
| Case(ci,p,t,br) ->
knht e t (Zcase(ci, mk_clos e p, mk_clos_vect e br)::stk)
| Fix _ -> knh (mk_clos2 e t) stk
| Cast(a,_,_) -> knht e a stk
| Rel n -> knh (clos_rel e n) stk
| (Lambda _|Prod _|Construct _|CoFix _|Ind _|
LetIn _|Const _|Var _|Evar _|Meta _|Sort _) ->
(mk_clos2 e t, stk)
(************************************************************************)
(* Computes a weak head normal form from the result of knh. *)
let rec knr info m stk =
match m.term with
| FLambda(n,tys,f,e) when red_set info.i_flags fBETA ->
(match get_args n tys f e stk with
Inl e', s -> knit info e' f s
| Inr lam, s -> (lam,s))
| FFlex(ConstKey kn) when red_set info.i_flags (fCONST kn) ->
(match ref_value_cache info (ConstKey kn) with
Some v -> kni info v stk
| None -> (set_norm m; (m,stk)))
| FFlex(VarKey id) when red_set info.i_flags (fVAR id) ->
(match ref_value_cache info (VarKey id) with
Some v -> kni info v stk
| None -> (set_norm m; (m,stk)))
| FFlex(RelKey k) when red_set info.i_flags fDELTA ->
(match ref_value_cache info (RelKey k) with
Some v -> kni info v stk
| None -> (set_norm m; (m,stk)))
| FConstruct(ind,c) when red_set info.i_flags fIOTA ->
(match strip_update_shift_app m stk with
(depth, args, Zcase(ci,_,br)::s) ->
assert (ci.ci_npar>=0);
let rargs = drop_parameters depth ci.ci_npar args in
kni info br.(c-1) (rargs@s)
| (_, cargs, Zfix(fx,par)::s) ->
let rarg = fapp_stack(m,cargs) in
let stk' = par @ append_stack [|rarg|] s in
let (fxe,fxbd) = contract_fix_vect fx.term in
knit info fxe fxbd stk'
| (_,args,s) -> (m,args@s))
| FCoFix _ when red_set info.i_flags fIOTA ->
(match strip_update_shift_app m stk with
(_, args, ((Zcase _::_) as stk')) ->
let (fxe,fxbd) = contract_fix_vect m.term in
knit info fxe fxbd (args@stk')
| (_,args,s) -> (m,args@s))
| FLetIn (_,v,_,bd,e) when red_set info.i_flags fZETA ->
knit info (subs_cons([|v|],e)) bd stk
| _ -> (m,stk)
(* Computes the weak head normal form of a term *)
and kni info m stk =
let (hm,s) = knh m stk in
knr info hm s
and knit info e t stk =
let (ht,s) = knht e t stk in
knr info ht s
let kh info v stk = fapp_stack(kni info v stk)
(************************************************************************)
(* Initialization and then normalization *)
(* weak reduction *)
let whd_val info v =
with_stats (lazy (term_of_fconstr (kh info v [])))
let inject = mk_clos (ESID 0)
let whd_stack infos m stk =
let k = kni infos m stk in
let _ = fapp_stack k in (* to unlock Zupdates! *)
k
(* cache of constants: the body is computed only when needed. *)
type clos_infos = fconstr infos
let create_clos_infos flgs env =
create (fun _ -> inject) flgs env
let unfold_reference = ref_value_cache
|