(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Classops.CL_FUN | SortClass -> Classops.CL_SORT | RefClass r -> Class.class_of_global (Smartlocate.smart_global ~head:true r) let scope_class_of_qualid qid = Notation.scope_class_of_class (cl_of_qualid qid) (*******************) (* "Show" commands *) let show_proof () = (* spiwack: this would probably be cooler with a bit of polishing. *) let p = Proof_global.give_me_the_proof () in let pprf = Proof.partial_proof p in Feedback.msg_notice (Pp.prlist_with_sep Pp.fnl Printer.pr_constr pprf) let show_node () = (* spiwack: I'm have little clue what this function used to do. I deactivated it, could, possibly, be cleaned away. (Feb. 2010) *) () let show_thesis () = Feedback.msg_error (anomaly (Pp.str "TODO") ) let show_top_evars () = (* spiwack: new as of Feb. 2010: shows goal evars in addition to non-goal evars. *) let pfts = get_pftreestate () in let gls = Proof.V82.subgoals pfts in let sigma = gls.Evd.sigma in Feedback.msg_notice (pr_evars_int sigma 1 (Evarutil.non_instantiated sigma)) let show_universes () = let pfts = get_pftreestate () in let gls = Proof.V82.subgoals pfts in let sigma = gls.Evd.sigma in let ctx = Evd.universe_context_set (Evd.nf_constraints sigma) in Feedback.msg_notice (Evd.pr_evar_universe_context (Evd.evar_universe_context sigma)); Feedback.msg_notice (str"Normalized constraints: " ++ Univ.pr_universe_context_set (Evd.pr_evd_level sigma) ctx) let show_prooftree () = (* Spiwack: proof tree is currently not working *) () let enable_goal_printing = ref true let print_subgoals () = if !enable_goal_printing && is_verbose () then begin Feedback.msg_notice (pr_open_subgoals ()) end let try_print_subgoals () = try print_subgoals () with Proof_global.NoCurrentProof | UserError _ -> () (* Simulate the Intro(s) tactic *) let show_intro all = let pf = get_pftreestate() in let {Evd.it=gls ; sigma=sigma; } = Proof.V82.subgoals pf in if not (List.is_empty gls) then begin let gl = {Evd.it=List.hd gls ; sigma = sigma; } in let l,_= decompose_prod_assum (strip_outer_cast (pf_concl gl)) in if all then let lid = Tactics.find_intro_names l gl in Feedback.msg_notice (hov 0 (prlist_with_sep spc pr_id lid)) else if not (List.is_empty l) then let n = List.last l in Feedback.msg_notice (pr_id (List.hd (Tactics.find_intro_names [n] gl))) end (** Prepare a "match" template for a given inductive type. For each branch of the match, we list the constructor name followed by enough pattern variables. [Not_found] is raised if the given string isn't the qualid of a known inductive type. *) let make_cases_aux glob_ref = match glob_ref with | Globnames.IndRef i -> let {Declarations.mind_nparams = np} , {Declarations.mind_consnames = carr ; Declarations.mind_nf_lc = tarr } = Global.lookup_inductive i in Util.Array.fold_right2 (fun consname typ l -> let al = List.rev (fst (decompose_prod typ)) in let al = Util.List.skipn np al in let rec rename avoid = function | [] -> [] | (n,_)::l -> let n' = Namegen.next_name_away_with_default (Id.to_string Namegen.default_dependent_ident) n avoid in Id.to_string n' :: rename (n'::avoid) l in let al' = rename [] al in (Id.to_string consname :: al') :: l) carr tarr [] | _ -> raise Not_found let make_cases s = let qualified_name = Libnames.qualid_of_string s in let glob_ref = Nametab.locate qualified_name in make_cases_aux glob_ref (** Textual display of a generic "match" template *) let show_match id = let patterns = try make_cases_aux (Nametab.global id) with Not_found -> error "Unknown inductive type." in let pr_branch l = str "| " ++ hov 1 (prlist_with_sep spc str l) ++ str " =>" in Feedback.msg_notice (v 1 (str "match # with" ++ fnl () ++ prlist_with_sep fnl pr_branch patterns ++ fnl () ++ str "end" ++ fnl ())) (* "Print" commands *) let print_path_entry p = let dir = pr_dirpath (Loadpath.logical p) in let path = str (Loadpath.physical p) in (dir ++ str " " ++ tbrk (0, 0) ++ path) let print_loadpath dir = let l = Loadpath.get_load_paths () in let l = match dir with | None -> l | Some dir -> let filter p = is_dirpath_prefix_of dir (Loadpath.logical p) in List.filter filter l in Pp.t (str "Logical Path: " ++ tab () ++ str "Physical path:" ++ fnl () ++ prlist_with_sep fnl print_path_entry l) let print_modules () = let opened = Library.opened_libraries () and loaded = Library.loaded_libraries () in (* we intersect over opened to preserve the order of opened since *) (* non-commutative operations (e.g. visibility) are done at import time *) let loaded_opened = List.intersect DirPath.equal opened loaded and only_loaded = List.subtract DirPath.equal loaded opened in str"Loaded and imported library files: " ++ pr_vertical_list pr_dirpath loaded_opened ++ fnl () ++ str"Loaded and not imported library files: " ++ pr_vertical_list pr_dirpath only_loaded let print_module r = let (loc,qid) = qualid_of_reference r in try let globdir = Nametab.locate_dir qid in match globdir with DirModule (dirpath,(mp,_)) -> Feedback.msg_notice (Printmod.print_module (Printmod.printable_body dirpath) mp) | _ -> raise Not_found with Not_found -> Feedback.msg_error (str"Unknown Module " ++ pr_qualid qid) let print_modtype r = let (loc,qid) = qualid_of_reference r in try let kn = Nametab.locate_modtype qid in Feedback.msg_notice (Printmod.print_modtype kn) with Not_found -> (* Is there a module of this name ? If yes we display its type *) try let mp = Nametab.locate_module qid in Feedback.msg_notice (Printmod.print_module false mp) with Not_found -> Feedback.msg_error (str"Unknown Module Type or Module " ++ pr_qualid qid) let print_namespace ns = let ns = List.rev (Names.DirPath.repr ns) in (* [match_dirpath], [match_modulpath] are helpers for [matches] which checks whether a constant is in the namespace [ns]. *) let rec match_dirpath ns = function | [] -> Some ns | id::dir -> begin match match_dirpath ns dir with | Some [] as y -> y | Some (a::ns') -> if Names.Id.equal a id then Some ns' else None | None -> None end in let rec match_modulepath ns = function | MPbound _ -> None (* Not a proper namespace. *) | MPfile dir -> match_dirpath ns (Names.DirPath.repr dir) | MPdot (mp,lbl) -> let id = Names.Label.to_id lbl in begin match match_modulepath ns mp with | Some [] as y -> y | Some (a::ns') -> if Names.Id.equal a id then Some ns' else None | None -> None end in (* [qualified_minus n mp] returns a list of qualifiers representing [mp] except the [n] first (in the concrete syntax order). The idea is that if [mp] matches [ns], then [qualified_minus mp (length ns)] will be the correct representation of [mp] assuming [ns] is imported. *) (* precondition: [mp] matches some namespace of length [n] *) let qualified_minus n mp = let rec list_of_modulepath = function | MPbound _ -> assert false (* MPbound never matches *) | MPfile dir -> Names.DirPath.repr dir | MPdot (mp,lbl) -> (Names.Label.to_id lbl)::(list_of_modulepath mp) in snd (Util.List.chop n (List.rev (list_of_modulepath mp))) in let print_list pr l = prlist_with_sep (fun () -> str".") pr l in let print_kn kn = (* spiwack: I'm ignoring the dirpath, is that bad? *) let (mp,_,lbl) = Names.repr_kn kn in let qn = (qualified_minus (List.length ns) mp)@[Names.Label.to_id lbl] in print_list pr_id qn in let print_constant k body = (* FIXME: universes *) let t = Typeops.type_of_constant_type (Global.env ()) body.Declarations.const_type in print_kn k ++ str":" ++ spc() ++ Printer.pr_type t in let matches mp = match match_modulepath ns mp with | Some [] -> true | _ -> false in let constants = (Environ.pre_env (Global.env ())).Pre_env.env_globals.Pre_env.env_constants in let constants_in_namespace = Cmap_env.fold (fun c (body,_) acc -> let kn = user_con c in if matches (modpath kn) then acc++fnl()++hov 2 (print_constant kn body) else acc ) constants (str"") in Feedback.msg_notice ((print_list pr_id ns)++str":"++fnl()++constants_in_namespace) let print_strategy r = let open Conv_oracle in let pr_level = function | Expand -> str "expand" | Level 0 -> str "transparent" | Level n -> str "level" ++ spc() ++ int n | Opaque -> str "opaque" in let pr_strategy (ref, lvl) = pr_global ref ++ str " : " ++ pr_level lvl in let oracle = Environ.oracle (Global.env ()) in match r with | None -> let fold key lvl (vacc, cacc) = match key with | VarKey id -> ((VarRef id, lvl) :: vacc, cacc) | ConstKey cst -> (vacc, (ConstRef cst, lvl) :: cacc) | RelKey _ -> (vacc, cacc) in let var_lvl, cst_lvl = fold_strategy fold oracle ([], []) in let var_msg = if List.is_empty var_lvl then mt () else str "Variable strategies" ++ fnl () ++ hov 0 (prlist_with_sep fnl pr_strategy var_lvl) ++ fnl () in let cst_msg = if List.is_empty cst_lvl then mt () else str "Constant strategies" ++ fnl () ++ hov 0 (prlist_with_sep fnl pr_strategy cst_lvl) in Feedback.msg_notice (var_msg ++ cst_msg) | Some r -> let r = Smartlocate.smart_global r in let key = match r with | VarRef id -> VarKey id | ConstRef cst -> ConstKey cst | IndRef _ | ConstructRef _ -> error "The reference is not unfoldable" in let lvl = get_strategy oracle key in Feedback.msg_notice (pr_strategy (r, lvl)) let dump_universes_gen g s = let output = open_out s in let output_constraint, close = if Filename.check_suffix s ".dot" || Filename.check_suffix s ".gv" then begin (* the lazy unit is to handle errors while printing the first line *) let init = lazy (Printf.fprintf output "digraph universes {\n") in begin fun kind left right -> let () = Lazy.force init in match kind with | Univ.Lt -> Printf.fprintf output " \"%s\" -> \"%s\" [style=bold];\n" right left | Univ.Le -> Printf.fprintf output " \"%s\" -> \"%s\" [style=solid];\n" right left | Univ.Eq -> Printf.fprintf output " \"%s\" -> \"%s\" [style=dashed];\n" left right end, begin fun () -> if Lazy.is_val init then Printf.fprintf output "}\n"; close_out output end end else begin begin fun kind left right -> let kind = match kind with | Univ.Lt -> "<" | Univ.Le -> "<=" | Univ.Eq -> "=" in Printf.fprintf output "%s %s %s ;\n" left kind right end, (fun () -> close_out output) end in try UGraph.dump_universes output_constraint g; close (); Feedback.msg_info (str "Universes written to file \"" ++ str s ++ str "\".") with reraise -> let reraise = CErrors.push reraise in close (); iraise reraise (*********************) (* "Locate" commands *) let locate_file f = let file = Flags.silently Loadpath.locate_file f in str file let msg_found_library = function | Library.LibLoaded, fulldir, file -> Feedback.msg_info (hov 0 (pr_dirpath fulldir ++ strbrk " has been loaded from file " ++ str file)) | Library.LibInPath, fulldir, file -> Feedback.msg_info (hov 0 (pr_dirpath fulldir ++ strbrk " is bound to file " ++ str file)) let err_unmapped_library loc ?from qid = let dir = fst (repr_qualid qid) in let prefix = match from with | None -> str "." | Some from -> str " and prefix " ++ pr_dirpath from ++ str "." in user_err_loc (loc,"locate_library", strbrk "Cannot find a physical path bound to logical path matching suffix " ++ pr_dirpath dir ++ prefix) let err_notfound_library loc ?from qid = let prefix = match from with | None -> str "." | Some from -> str " with prefix " ++ pr_dirpath from ++ str "." in user_err_loc (loc,"locate_library", strbrk "Unable to locate library " ++ pr_qualid qid ++ prefix) let print_located_library r = let (loc,qid) = qualid_of_reference r in try msg_found_library (Library.locate_qualified_library ~warn:false qid) with | Library.LibUnmappedDir -> err_unmapped_library loc qid | Library.LibNotFound -> err_notfound_library loc qid let smart_global r = let gr = Smartlocate.smart_global r in Dumpglob.add_glob (Constrarg.loc_of_or_by_notation loc_of_reference r) gr; gr let dump_global r = try let gr = Smartlocate.smart_global r in Dumpglob.add_glob (Constrarg.loc_of_or_by_notation loc_of_reference r) gr with e when CErrors.noncritical e -> () (**********) (* Syntax *) let vernac_syntax_extension locality local = let local = enforce_module_locality locality local in Metasyntax.add_syntax_extension local let vernac_delimiters sc = function | Some lr -> Metasyntax.add_delimiters sc lr | None -> Metasyntax.remove_delimiters sc let vernac_bind_scope sc cll = Metasyntax.add_class_scope sc (List.map scope_class_of_qualid cll) let vernac_open_close_scope locality local (b,s) = let local = enforce_section_locality locality local in Notation.open_close_scope (local,b,s) let vernac_arguments_scope locality r scl = let local = make_section_locality locality in Notation.declare_arguments_scope local (smart_global r) scl let vernac_infix locality local = let local = enforce_module_locality locality local in Metasyntax.add_infix local let vernac_notation locality local = let local = enforce_module_locality locality local in Metasyntax.add_notation local (***********) (* Gallina *) let start_proof_and_print k l hook = let inference_hook = if Flags.is_program_mode () then let hook env sigma ev = let tac = !Obligations.default_tactic in let evi = Evd.find sigma ev in let env = Evd.evar_filtered_env evi in try let concl = Evarutil.nf_evars_universes sigma evi.Evd.evar_concl in if Evarutil.has_undefined_evars sigma concl then raise Exit; let c, _, ctx = Pfedit.build_by_tactic env (Evd.evar_universe_context sigma) concl (Tacticals.New.tclCOMPLETE tac) in Evd.set_universe_context sigma ctx, c with Logic_monad.TacticFailure e when Logic.catchable_exception e -> error "The statement obligations could not be resolved \ automatically, write a statement definition first." in Some hook else None in start_proof_com ?inference_hook k l hook let no_hook = Lemmas.mk_hook (fun _ _ -> ()) let vernac_definition_hook p = function | Coercion -> Class.add_coercion_hook p | CanonicalStructure -> Lemmas.mk_hook (fun _ -> Recordops.declare_canonical_structure) | SubClass -> Class.add_subclass_hook p | _ -> no_hook let vernac_definition locality p (local,k) ((loc,id as lid),pl) def = let local = enforce_locality_exp locality local in let hook = vernac_definition_hook p k in let () = match local with | Discharge -> Dumpglob.dump_definition lid true "var" | Local | Global -> Dumpglob.dump_definition lid false "def" in (match def with | ProveBody (bl,t) -> (* local binders, typ *) start_proof_and_print (local,p,DefinitionBody k) [Some (lid,pl), (bl,t,None)] hook | DefineBody (bl,red_option,c,typ_opt) -> let red_option = match red_option with | None -> None | Some r -> let (evc,env)= get_current_context () in Some (snd (Hook.get f_interp_redexp env evc r)) in do_definition id (local,p,k) pl bl red_option c typ_opt hook) let vernac_start_proof locality p kind l lettop = let local = enforce_locality_exp locality None in if Dumpglob.dump () then List.iter (fun (id, _) -> match id with | Some (lid,_) -> Dumpglob.dump_definition lid false "prf" | None -> ()) l; if not(refining ()) then if lettop then errorlabstrm "Vernacentries.StartProof" (str "Let declarations can only be used in proof editing mode."); start_proof_and_print (local, p, Proof kind) l no_hook let qed_display_script = ref true let vernac_end_proof ?proof = function | Admitted -> save_proof ?proof Admitted | Proved (_,_) as e -> if is_verbose () && !qed_display_script && !Flags.coqtop_ui then Stm.show_script ?proof (); save_proof ?proof e (* A stupid macro that should be replaced by ``Exact c. Save.'' all along the theories [??] *) let vernac_exact_proof c = (* spiwack: for simplicity I do not enforce that "Proof proof_term" is called only at the begining of a proof. *) let status = by (Tactics.exact_proof c) in save_proof (Vernacexpr.(Proved(Opaque None,None))); if not status then Feedback.feedback Feedback.AddedAxiom let vernac_assumption locality poly (local, kind) l nl = let local = enforce_locality_exp locality local in let global = local == Global in let kind = local, poly, kind in List.iter (fun (is_coe,(idl,c)) -> if Dumpglob.dump () then List.iter (fun (lid, _) -> if global then Dumpglob.dump_definition lid false "ax" else Dumpglob.dump_definition lid true "var") idl) l; let status = do_assumptions kind nl l in if not status then Feedback.feedback Feedback.AddedAxiom let vernac_record k poly finite struc binders sort nameopt cfs = let const = match nameopt with | None -> add_prefix "Build_" (snd (fst (snd struc))) | Some (_,id as lid) -> Dumpglob.dump_definition lid false "constr"; id in if Dumpglob.dump () then ( Dumpglob.dump_definition (fst (snd struc)) false "rec"; List.iter (fun (((_, x), _), _) -> match x with | Vernacexpr.AssumExpr ((loc, Name id), _) -> Dumpglob.dump_definition (loc,id) false "proj" | _ -> ()) cfs); ignore(Record.definition_structure (k,poly,finite,struc,binders,cfs,const,sort)) (** When [poly] is true the type is declared polymorphic. When [lo] is true, then the type is declared private (as per the [Private] keyword). [finite] indicates whether the type is inductive, co-inductive or neither. *) let vernac_inductive poly lo finite indl = if Dumpglob.dump () then List.iter (fun (((coe,(lid,_)), _, _, _, cstrs), _) -> match cstrs with | Constructors cstrs -> Dumpglob.dump_definition lid false "ind"; List.iter (fun (_, (lid, _)) -> Dumpglob.dump_definition lid false "constr") cstrs | _ -> () (* dumping is done by vernac_record (called below) *) ) indl; match indl with | [ ( _ , _ , _ ,Record, Constructors _ ),_ ] -> CErrors.error "The Record keyword cannot be used to define a variant type. Use Variant instead." | [ (_ , _ , _ ,Variant, RecordDecl _),_ ] -> CErrors.error "The Variant keyword cannot be used to define a record type. Use Record instead." | [ ( id , bl , c , b, RecordDecl (oc,fs) ), [] ] -> vernac_record (match b with Class _ -> Class false | _ -> b) poly finite id bl c oc fs | [ ( id , bl , c , Class _, Constructors [l]), [] ] -> let f = let (coe, ((loc, id), ce)) = l in let coe' = if coe then Some true else None in (((coe', AssumExpr ((loc, Name id), ce)), None), []) in vernac_record (Class true) poly finite id bl c None [f] | [ ( _ , _, _, Class _, Constructors _), [] ] -> CErrors.error "Inductive classes not supported" | [ ( id , bl , c , Class _, _), _ :: _ ] -> CErrors.error "where clause not supported for classes" | [ ( _ , _ , _ , _, RecordDecl _ ) , _ ] -> CErrors.error "where clause not supported for (co)inductive records" | _ -> let unpack = function | ( (false, id) , bl , c , _ , Constructors l ) , ntn -> ( id , bl , c , l ) , ntn | ( (true,_),_,_,_,Constructors _),_ -> CErrors.error "Variant types do not handle the \"> Name\" syntax, which is reserved for records. Use the \":>\" syntax on constructors instead." | _ -> CErrors.error "Cannot handle mutually (co)inductive records." in let indl = List.map unpack indl in do_mutual_inductive indl poly lo finite let vernac_fixpoint locality poly local l = let local = enforce_locality_exp locality local in if Dumpglob.dump () then List.iter (fun (((lid,_), _, _, _, _), _) -> Dumpglob.dump_definition lid false "def") l; do_fixpoint local poly l let vernac_cofixpoint locality poly local l = let local = enforce_locality_exp locality local in if Dumpglob.dump () then List.iter (fun (((lid,_), _, _, _), _) -> Dumpglob.dump_definition lid false "def") l; do_cofixpoint local poly l let vernac_scheme l = if Dumpglob.dump () then List.iter (fun (lid, s) -> Option.iter (fun lid -> Dumpglob.dump_definition lid false "def") lid; match s with | InductionScheme (_, r, _) | CaseScheme (_, r, _) | EqualityScheme r -> dump_global r) l; Indschemes.do_scheme l let vernac_combined_scheme lid l = if Dumpglob.dump () then (Dumpglob.dump_definition lid false "def"; List.iter (fun lid -> dump_global (Misctypes.AN (Ident lid))) l); Indschemes.do_combined_scheme lid l let vernac_universe loc poly l = if poly && not (Lib.sections_are_opened ()) then user_err_loc (loc, "vernac_universe", str"Polymorphic universes can only be declared inside sections, " ++ str "use Monomorphic Universe instead"); do_universe poly l let vernac_constraint loc poly l = if poly && not (Lib.sections_are_opened ()) then user_err_loc (loc, "vernac_constraint", str"Polymorphic universe constraints can only be declared" ++ str " inside sections, use Monomorphic Constraint instead"); do_constraint poly l (**********************) (* Modules *) let vernac_import export refl = Library.import_module export (List.map qualid_of_reference refl); Lib.add_frozen_state () let vernac_declare_module export (loc, id) binders_ast mty_ast = (* We check the state of the system (in section, in module type) and what module information is supplied *) if Lib.sections_are_opened () then error "Modules and Module Types are not allowed inside sections."; let binders_ast = List.map (fun (export,idl,ty) -> if not (Option.is_empty export) then error "Arguments of a functor declaration cannot be exported. Remove the \"Export\" and \"Import\" keywords from every functor argument." else (idl,ty)) binders_ast in let mp = Declaremods.declare_module Modintern.interp_module_ast id binders_ast (Enforce mty_ast) [] in Dumpglob.dump_moddef loc mp "mod"; if_verbose Feedback.msg_info (str "Module " ++ pr_id id ++ str " is declared"); Option.iter (fun export -> vernac_import export [Ident (Loc.ghost,id)]) export let vernac_define_module export (loc, id) binders_ast mty_ast_o mexpr_ast_l = (* We check the state of the system (in section, in module type) and what module information is supplied *) if Lib.sections_are_opened () then error "Modules and Module Types are not allowed inside sections."; match mexpr_ast_l with | [] -> check_no_pending_proofs (); let binders_ast,argsexport = List.fold_right (fun (export,idl,ty) (args,argsexport) -> (idl,ty)::args, (List.map (fun (_,i) -> export,i)idl)@argsexport) binders_ast ([],[]) in let mp = Declaremods.start_module Modintern.interp_module_ast export id binders_ast mty_ast_o in Dumpglob.dump_moddef loc mp "mod"; if_verbose Feedback.msg_info (str "Interactive Module " ++ pr_id id ++ str " started"); List.iter (fun (export,id) -> Option.iter (fun export -> vernac_import export [Ident (Loc.ghost,id)]) export ) argsexport | _::_ -> let binders_ast = List.map (fun (export,idl,ty) -> if not (Option.is_empty export) then error "Arguments of a functor definition can be imported only if the definition is interactive. Remove the \"Export\" and \"Import\" keywords from every functor argument." else (idl,ty)) binders_ast in let mp = Declaremods.declare_module Modintern.interp_module_ast id binders_ast mty_ast_o mexpr_ast_l in Dumpglob.dump_moddef loc mp "mod"; if_verbose Feedback.msg_info (str "Module " ++ pr_id id ++ str " is defined"); Option.iter (fun export -> vernac_import export [Ident (Loc.ghost,id)]) export let vernac_end_module export (loc,id as lid) = let mp = Declaremods.end_module () in Dumpglob.dump_modref loc mp "mod"; if_verbose Feedback.msg_info (str "Module " ++ pr_id id ++ str " is defined"); Option.iter (fun export -> vernac_import export [Ident lid]) export let vernac_declare_module_type (loc,id) binders_ast mty_sign mty_ast_l = if Lib.sections_are_opened () then error "Modules and Module Types are not allowed inside sections."; match mty_ast_l with | [] -> check_no_pending_proofs (); let binders_ast,argsexport = List.fold_right (fun (export,idl,ty) (args,argsexport) -> (idl,ty)::args, (List.map (fun (_,i) -> export,i)idl)@argsexport) binders_ast ([],[]) in let mp = Declaremods.start_modtype Modintern.interp_module_ast id binders_ast mty_sign in Dumpglob.dump_moddef loc mp "modtype"; if_verbose Feedback.msg_info (str "Interactive Module Type " ++ pr_id id ++ str " started"); List.iter (fun (export,id) -> Option.iter (fun export -> vernac_import export [Ident (Loc.ghost,id)]) export ) argsexport | _ :: _ -> let binders_ast = List.map (fun (export,idl,ty) -> if not (Option.is_empty export) then error "Arguments of a functor definition can be imported only if the definition is interactive. Remove the \"Export\" and \"Import\" keywords from every functor argument." else (idl,ty)) binders_ast in let mp = Declaremods.declare_modtype Modintern.interp_module_ast id binders_ast mty_sign mty_ast_l in Dumpglob.dump_moddef loc mp "modtype"; if_verbose Feedback.msg_info (str "Module Type " ++ pr_id id ++ str " is defined") let vernac_end_modtype (loc,id) = let mp = Declaremods.end_modtype () in Dumpglob.dump_modref loc mp "modtype"; if_verbose Feedback.msg_info (str "Module Type " ++ pr_id id ++ str " is defined") let vernac_include l = Declaremods.declare_include Modintern.interp_module_ast l (**********************) (* Gallina extensions *) (* Sections *) let vernac_begin_section (_, id as lid) = check_no_pending_proofs (); Dumpglob.dump_definition lid true "sec"; Lib.open_section id let vernac_end_section (loc,_) = Dumpglob.dump_reference loc (DirPath.to_string (Lib.current_dirpath true)) "<>" "sec"; Lib.close_section () let vernac_name_sec_hyp (_,id) set = Proof_using.name_set id set (* Dispatcher of the "End" command *) let vernac_end_segment (_,id as lid) = check_no_pending_proofs (); match Lib.find_opening_node id with | Lib.OpenedModule (false,export,_,_) -> vernac_end_module export lid | Lib.OpenedModule (true,_,_,_) -> vernac_end_modtype lid | Lib.OpenedSection _ -> vernac_end_section lid | _ -> assert false (* Libraries *) let vernac_require from import qidl = let qidl = List.map qualid_of_reference qidl in let root = match from with | None -> None | Some from -> let (_, qid) = Libnames.qualid_of_reference from in let (hd, tl) = Libnames.repr_qualid qid in Some (Libnames.add_dirpath_suffix hd tl) in let locate (loc, qid) = try let warn = Flags.is_verbose () in let (_, dir, f) = Library.locate_qualified_library ?root ~warn qid in (dir, f) with | Library.LibUnmappedDir -> err_unmapped_library loc ?from:root qid | Library.LibNotFound -> err_notfound_library loc ?from:root qid in let modrefl = List.map locate qidl in if Dumpglob.dump () then List.iter2 (fun (loc, _) dp -> Dumpglob.dump_libref loc dp "lib") qidl (List.map fst modrefl); Library.require_library_from_dirpath modrefl import (* Coercions and canonical structures *) let vernac_canonical r = Recordops.declare_canonical_structure (smart_global r) let vernac_coercion locality poly local ref qids qidt = let local = enforce_locality locality local in let target = cl_of_qualid qidt in let source = cl_of_qualid qids in let ref' = smart_global ref in Class.try_add_new_coercion_with_target ref' ~local poly ~source ~target; if_verbose Feedback.msg_info (pr_global ref' ++ str " is now a coercion") let vernac_identity_coercion locality poly local id qids qidt = let local = enforce_locality locality local in let target = cl_of_qualid qidt in let source = cl_of_qualid qids in Class.try_add_new_identity_coercion id ~local poly ~source ~target (* Type classes *) let vernac_instance abst locality poly sup inst props pri = let global = not (make_section_locality locality) in Dumpglob.dump_constraint inst false "inst"; ignore(Classes.new_instance ~abstract:abst ~global poly sup inst props pri) let vernac_context poly l = if not (Classes.context poly l) then Feedback.feedback Feedback.AddedAxiom let vernac_declare_instances locality insts = let glob = not (make_section_locality locality) in List.iter (fun (id, info) -> Classes.existing_instance glob id (Some info)) insts let vernac_declare_class id = Record.declare_existing_class (Nametab.global id) (***********) (* Solving *) let command_focus = Proof.new_focus_kind () let focus_command_cond = Proof.no_cond command_focus (* A command which should be a tactic. It has been added by Christine to patch an error in the design of the proof machine, and enables to instantiate existential variables when there are no more goals to solve. It cannot be a tactic since all tactics fail if there are no further goals to prove. *) let vernac_solve_existential = instantiate_nth_evar_com let vernac_set_end_tac tac = if not (refining ()) then error "Unknown command of the non proof-editing mode."; match tac with | Tacexpr.TacId [] -> () | _ -> set_end_tac tac (* TO DO verifier s'il faut pas mettre exist s | TacId s ici*) let vernac_set_used_variables e = let open Context.Named.Declaration in let env = Global.env () in let tys = List.map snd (Proof.initial_goals (Proof_global.give_me_the_proof ())) in let l = Proof_using.process_expr env e tys in let vars = Environ.named_context env in List.iter (fun id -> if not (List.exists (Id.equal id % get_id) vars) then errorlabstrm "vernac_set_used_variables" (str "Unknown variable: " ++ pr_id id)) l; let _, to_clear = set_used_variables l in let to_clear = List.map snd to_clear in Proof_global.with_current_proof begin fun _ p -> if List.is_empty to_clear then (p, ()) else let tac = Tactics.clear to_clear in fst (solve SelectAll None tac p), () end (*****************************) (* Auxiliary file management *) let expand filename = Envars.expand_path_macros ~warn:(fun x -> Feedback.msg_warning (str x)) filename let vernac_add_loadpath implicit pdir ldiropt = let pdir = expand pdir in let alias = Option.default Nameops.default_root_prefix ldiropt in Mltop.add_rec_path Mltop.AddTopML ~unix_path:pdir ~coq_root:alias ~implicit let vernac_remove_loadpath path = Loadpath.remove_load_path (expand path) (* Coq syntax for ML or system commands *) let vernac_add_ml_path isrec path = (if isrec then Mltop.add_rec_ml_dir else Mltop.add_ml_dir) (expand path) let vernac_declare_ml_module locality l = let local = make_locality locality in Mltop.declare_ml_modules local (List.map expand l) let vernac_chdir = function | None -> Feedback.msg_notice (str (Sys.getcwd())) | Some path -> begin try Sys.chdir (expand path) with Sys_error err -> (* Cd is typically used to control the output directory of extraction. A failed Cd could lead to overwriting .ml files so we make it an error. *) CErrors.error ("Cd failed: " ^ err) end; if_verbose Feedback.msg_info (str (Sys.getcwd())) (********************) (* State management *) let vernac_write_state file = Pfedit.delete_all_proofs (); let file = CUnix.make_suffix file ".coq" in States.extern_state file let vernac_restore_state file = Pfedit.delete_all_proofs (); let file = Loadpath.locate_file (CUnix.make_suffix file ".coq") in States.intern_state file (************) (* Commands *) let vernac_create_hintdb locality id b = let local = make_module_locality locality in Hints.create_hint_db local id full_transparent_state b let vernac_remove_hints locality dbs ids = let local = make_module_locality locality in Hints.remove_hints local dbs (List.map Smartlocate.global_with_alias ids) let vernac_hints locality poly local lb h = let local = enforce_module_locality locality local in Hints.add_hints local lb (Hints.interp_hints poly h) let vernac_syntactic_definition locality lid x local y = Dumpglob.dump_definition lid false "syndef"; let local = enforce_module_locality locality local in Metasyntax.add_syntactic_definition (snd lid) x local y let vernac_declare_implicits locality r l = let local = make_section_locality locality in match l with | [] -> Impargs.declare_implicits local (smart_global r) | _::_ as imps -> Impargs.declare_manual_implicits local (smart_global r) ~enriching:false (List.map (List.map (fun (ex,b,f) -> ex, (b,true,f))) imps) let warn_arguments_assert = CWarnings.create ~name:"arguments-assert" ~category:"vernacular" (fun sr -> strbrk "This command is just asserting the names of arguments of " ++ pr_global sr ++ strbrk". If this is what you want add " ++ strbrk "': assert' to silence the warning. If you want " ++ strbrk "to clear implicit arguments add ': clear implicits'. " ++ strbrk "If you want to clear notation scopes add ': clear scopes'") (* [nargs_for_red] is the number of arguments required to trigger reduction, [args] is the main list of arguments statuses, [more_implicits] is a list of extra lists of implicit statuses *) let vernac_arguments locality reference args more_implicits nargs_for_red flags = let assert_flag = List.mem `Assert flags in let rename_flag = List.mem `Rename flags in let clear_scopes_flag = List.mem `ClearScopes flags in let extra_scopes_flag = List.mem `ExtraScopes flags in let clear_implicits_flag = List.mem `ClearImplicits flags in let default_implicits_flag = List.mem `DefaultImplicits flags in let never_unfold_flag = List.mem `ReductionNeverUnfold flags in let err_incompat x y = error ("Options \""^x^"\" and \""^y^"\" are incompatible.") in if assert_flag && rename_flag then err_incompat "assert" "rename"; if Option.has_some nargs_for_red && never_unfold_flag then err_incompat "simpl never" "/"; if never_unfold_flag && List.mem `ReductionDontExposeCase flags then err_incompat "simpl never" "simpl nomatch"; if clear_scopes_flag && extra_scopes_flag then err_incompat "clear scopes" "extra scopes"; if clear_implicits_flag && default_implicits_flag then err_incompat "clear implicits" "default implicits"; let sr = smart_global reference in let inf_names = let ty = Global.type_of_global_unsafe sr in Impargs.compute_implicits_names (Global.env ()) ty in let prev_names = try Arguments_renaming.arguments_names sr with Not_found -> inf_names in let num_args = List.length inf_names in assert (Int.equal num_args (List.length prev_names)); let names_of args = List.map (fun a -> a.name) args in (* Checks *) let err_extra_args names = errorlabstrm "vernac_declare_arguments" (strbrk "Extra arguments: " ++ prlist_with_sep pr_comma pr_name names ++ str ".") in let err_missing_args names = errorlabstrm "vernac_declare_arguments" (strbrk "The following arguments are not declared: " ++ prlist_with_sep pr_comma pr_name names ++ str ".") in let rec check_extra_args extra_args = match extra_args with | [] -> () | { notation_scope = None } :: _ -> err_extra_args (names_of extra_args) | { name = Anonymous; notation_scope = Some _ } :: args -> check_extra_args args | _ -> error "Extra notation scopes can be set on anonymous and explicit arguments only." in let args, scopes = let scopes = List.map (fun { notation_scope = s } -> s) args in if List.length args > num_args then let args, extra_args = List.chop num_args args in if extra_scopes_flag then (check_extra_args extra_args; (args, scopes)) else err_extra_args (names_of extra_args) else args, scopes in if Option.cata (fun n -> n > num_args) false nargs_for_red then error "The \"/\" modifier should be put before any extra scope."; let scopes_specified = List.exists Option.has_some scopes in if scopes_specified && clear_scopes_flag then error "The \"clear scopes\" flag is incompatible with scope annotations."; let names = List.map (fun { name } -> name) args in let names = names :: List.map (List.map fst) more_implicits in let rename_flag_required = ref false in let example_renaming = ref None in let save_example_renaming renaming = rename_flag_required := !rename_flag_required || not (Name.equal (fst renaming) Anonymous); if Option.is_empty !example_renaming then example_renaming := Some renaming in let rec names_union names1 names2 = match names1, names2 with | [], [] -> [] | _ :: _, [] -> names1 | [], _ :: _ -> names2 | (Name _ as name) :: names1, Anonymous :: names2 | Anonymous :: names1, (Name _ as name) :: names2 -> name :: names_union names1 names2 | name1 :: names1, name2 :: names2 -> if Name.equal name1 name2 then name1 :: names_union names1 names2 else error "Argument lists should agree on the names they provide." in let names = List.fold_left names_union [] names in let rec rename prev_names names = match prev_names, names with | [], [] -> [] | [], _ :: _ -> err_extra_args names | _ :: _, [] when assert_flag -> (* Error messages are expressed in terms of original names, not renamed ones. *) err_missing_args (List.lastn (List.length prev_names) inf_names) | _ :: _, [] -> prev_names | prev :: prev_names, Anonymous :: names -> prev :: rename prev_names names | prev :: prev_names, (Name id as name) :: names -> if not (Name.equal prev name) then save_example_renaming (prev,name); name :: rename prev_names names in let names = rename prev_names names in let renaming_specified = Option.has_some !example_renaming in if !rename_flag_required && not rename_flag then errorlabstrm "vernac_declare_arguments" (strbrk "To rename arguments the \"rename\" flag must be specified." ++ spc () ++ match !example_renaming with | None -> mt () | Some (o,n) -> str "Argument " ++ pr_name o ++ str " renamed to " ++ pr_name n ++ str "."); let duplicate_names = List.duplicates Name.equal (List.filter ((!=) Anonymous) names) in if not (List.is_empty duplicate_names) then begin let duplicates = prlist_with_sep pr_comma pr_name duplicate_names in errorlabstrm "_" (strbrk "Some argument names are duplicated: " ++ duplicates) end; (* Parts of this code are overly complicated because the implicit arguments API is completely crazy: positions (ExplByPos) are elaborated to names. This is broken by design, since not all arguments have names. So even though we eventually want to map only positions to implicit statuses, we have to check whether the corresponding arguments have names, not to trigger an error in the impargs code. Even better, the names we have to check are not the current ones (after previous renamings), but the original ones (inferred from the type). *) let implicits = List.map (fun { name; implicit_status = i } -> (name,i)) args in let implicits = implicits :: more_implicits in let open Vernacexpr in let rec build_implicits inf_names implicits = match inf_names, implicits with | _, [] -> [] | _ :: inf_names, (_, NotImplicit) :: implicits -> build_implicits inf_names implicits (* With the current impargs API, it is impossible to make an originally anonymous argument implicit *) | Anonymous :: _, (name, _) :: _ -> errorlabstrm "vernac_declare_arguments" (strbrk"Argument "++ pr_name name ++ strbrk " cannot be declared implicit.") | Name id :: inf_names, (name, impl) :: implicits -> let max = impl = MaximallyImplicit in (ExplByName id,max,false) :: build_implicits inf_names implicits | _ -> assert false (* already checked in [names_union] *) in let implicits = List.map (build_implicits inf_names) implicits in let implicits_specified = match implicits with [[]] -> false | _ -> true in if implicits_specified && clear_implicits_flag then error "The \"clear implicits\" flag is incompatible with implicit annotations"; if implicits_specified && default_implicits_flag then error "The \"default implicits\" flag is incompatible with implicit annotations"; let rargs = Util.List.map_filter (function (n, true) -> Some n | _ -> None) (Util.List.map_i (fun i { recarg_like = b } -> i, b) 0 args) in let rec narrow = function | #Reductionops.ReductionBehaviour.flag as x :: tl -> x :: narrow tl | [] -> [] | _ :: tl -> narrow tl in let red_flags = narrow flags in let red_modifiers_specified = not (List.is_empty rargs) || Option.has_some nargs_for_red || not (List.is_empty red_flags) in if not (List.is_empty rargs) && never_unfold_flag then err_incompat "simpl never" "!"; (* Actions *) if renaming_specified then begin let local = make_section_locality locality in Arguments_renaming.rename_arguments local sr names end; if scopes_specified || clear_scopes_flag then begin let scopes = List.map (Option.map (fun (o,k) -> try ignore (Notation.find_scope k); k with UserError _ -> Notation.find_delimiters_scope o k)) scopes in vernac_arguments_scope locality reference scopes end; if implicits_specified || clear_implicits_flag then vernac_declare_implicits locality reference implicits; if default_implicits_flag then vernac_declare_implicits locality reference []; if red_modifiers_specified then begin match sr with | ConstRef _ as c -> Reductionops.ReductionBehaviour.set (make_section_locality locality) c (rargs, Option.default ~-1 nargs_for_red, red_flags) | _ -> errorlabstrm "" (strbrk "Modifiers of the behavior of the simpl tactic "++ strbrk "are relevant for constants only.") end; if not (renaming_specified || implicits_specified || scopes_specified || red_modifiers_specified) && (List.is_empty flags) then warn_arguments_assert sr let default_env () = { Notation_term.ninterp_var_type = Id.Map.empty; ninterp_rec_vars = Id.Map.empty; } let vernac_reserve bl = let sb_decl = (fun (idl,c) -> let env = Global.env() in let sigma = Evd.from_env env in let t,ctx = Constrintern.interp_type env sigma c in let t = Detyping.detype false [] env (Evd.from_ctx ctx) t in let t,_ = Notation_ops.notation_constr_of_glob_constr (default_env ()) t in Reserve.declare_reserved_type idl t) in List.iter sb_decl bl let vernac_generalizable locality = let local = make_non_locality locality in Implicit_quantifiers.declare_generalizable local let _ = declare_bool_option { optsync = false; optdepr = false; optname = "silent"; optkey = ["Silent"]; optread = is_silent; optwrite = make_silent } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "implicit arguments"; optkey = ["Implicit";"Arguments"]; optread = Impargs.is_implicit_args; optwrite = Impargs.make_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "strict implicit arguments"; optkey = ["Strict";"Implicit"]; optread = Impargs.is_strict_implicit_args; optwrite = Impargs.make_strict_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "strong strict implicit arguments"; optkey = ["Strongly";"Strict";"Implicit"]; optread = Impargs.is_strongly_strict_implicit_args; optwrite = Impargs.make_strongly_strict_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "contextual implicit arguments"; optkey = ["Contextual";"Implicit"]; optread = Impargs.is_contextual_implicit_args; optwrite = Impargs.make_contextual_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "implicit status of reversible patterns"; optkey = ["Reversible";"Pattern";"Implicit"]; optread = Impargs.is_reversible_pattern_implicit_args; optwrite = Impargs.make_reversible_pattern_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "maximal insertion of implicit"; optkey = ["Maximal";"Implicit";"Insertion"]; optread = Impargs.is_maximal_implicit_args; optwrite = Impargs.make_maximal_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "automatic introduction of variables"; optkey = ["Automatic";"Introduction"]; optread = Flags.is_auto_intros; optwrite = make_auto_intros } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "coercion printing"; optkey = ["Printing";"Coercions"]; optread = (fun () -> !Constrextern.print_coercions); optwrite = (fun b -> Constrextern.print_coercions := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "printing of existential variable instances"; optkey = ["Printing";"Existential";"Instances"]; optread = (fun () -> !Detyping.print_evar_arguments); optwrite = (:=) Detyping.print_evar_arguments } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "implicit arguments printing"; optkey = ["Printing";"Implicit"]; optread = (fun () -> !Constrextern.print_implicits); optwrite = (fun b -> Constrextern.print_implicits := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "implicit arguments defensive printing"; optkey = ["Printing";"Implicit";"Defensive"]; optread = (fun () -> !Constrextern.print_implicits_defensive); optwrite = (fun b -> Constrextern.print_implicits_defensive := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "projection printing using dot notation"; optkey = ["Printing";"Projections"]; optread = (fun () -> !Constrextern.print_projections); optwrite = (fun b -> Constrextern.print_projections := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "notations printing"; optkey = ["Printing";"Notations"]; optread = (fun () -> not !Constrextern.print_no_symbol); optwrite = (fun b -> Constrextern.print_no_symbol := not b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "raw printing"; optkey = ["Printing";"All"]; optread = (fun () -> !Flags.raw_print); optwrite = (fun b -> Flags.raw_print := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "record printing"; optkey = ["Printing";"Records"]; optread = (fun () -> !Flags.record_print); optwrite = (fun b -> Flags.record_print := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "use of the program extension"; optkey = ["Program";"Mode"]; optread = (fun () -> !Flags.program_mode); optwrite = (fun b -> Flags.program_mode:=b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "universe polymorphism"; optkey = ["Universe"; "Polymorphism"]; optread = Flags.is_universe_polymorphism; optwrite = Flags.make_universe_polymorphism } let _ = declare_int_option { optsync = true; optdepr = false; optname = "the level of inlining during functor application"; optkey = ["Inline";"Level"]; optread = (fun () -> Some (Flags.get_inline_level ())); optwrite = (fun o -> let lev = Option.default Flags.default_inline_level o in Flags.set_inline_level lev) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "kernel term sharing"; optkey = ["Kernel"; "Term"; "Sharing"]; optread = (fun () -> !CClosure.share); optwrite = (fun b -> CClosure.share := b) } (* No more undo limit in the new proof engine. The command still exists for compatibility (e.g. with ProofGeneral) *) let _ = declare_int_option { optsync = false; optdepr = true; optname = "the undo limit (OBSOLETE)"; optkey = ["Undo"]; optread = (fun _ -> None); optwrite = (fun _ -> ()) } let _ = declare_int_option { optsync = false; optdepr = false; optname = "the hypotheses limit"; optkey = ["Hyps";"Limit"]; optread = Flags.print_hyps_limit; optwrite = Flags.set_print_hyps_limit } let _ = declare_int_option { optsync = true; optdepr = false; optname = "the printing depth"; optkey = ["Printing";"Depth"]; optread = Pp_control.get_depth_boxes; optwrite = Pp_control.set_depth_boxes } let _ = declare_int_option { optsync = true; optdepr = false; optname = "the printing width"; optkey = ["Printing";"Width"]; optread = Pp_control.get_margin; optwrite = Pp_control.set_margin } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "printing of universes"; optkey = ["Printing";"Universes"]; optread = (fun () -> !Constrextern.print_universes); optwrite = (fun b -> Constrextern.print_universes:=b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "dumping bytecode after compilation"; optkey = ["Dump";"Bytecode"]; optread = Flags.get_dump_bytecode; optwrite = Flags.set_dump_bytecode } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "explicitly parsing implicit arguments"; optkey = ["Parsing";"Explicit"]; optread = (fun () -> !Constrintern.parsing_explicit); optwrite = (fun b -> Constrintern.parsing_explicit := b) } let _ = declare_string_option ~preprocess:CWarnings.normalize_flags_string { optsync = true; optdepr = false; optname = "warnings display"; optkey = ["Warnings"]; optread = CWarnings.get_flags; optwrite = CWarnings.set_flags } let vernac_set_strategy locality l = let local = make_locality locality in let glob_ref r = match smart_global r with | ConstRef sp -> EvalConstRef sp | VarRef id -> EvalVarRef id | _ -> error "cannot set an inductive type or a constructor as transparent" in let l = List.map (fun (lev,ql) -> (lev,List.map glob_ref ql)) l in Redexpr.set_strategy local l let vernac_set_opacity locality (v,l) = let local = make_non_locality locality in let glob_ref r = match smart_global r with | ConstRef sp -> EvalConstRef sp | VarRef id -> EvalVarRef id | _ -> error "cannot set an inductive type or a constructor as transparent" in let l = List.map glob_ref l in Redexpr.set_strategy local [v,l] let vernac_set_option locality key = function | StringValue s -> set_string_option_value_gen locality key s | StringOptValue (Some s) -> set_string_option_value_gen locality key s | StringOptValue None -> unset_option_value_gen locality key | IntValue n -> set_int_option_value_gen locality key n | BoolValue b -> set_bool_option_value_gen locality key b let vernac_set_append_option locality key s = set_string_option_append_value_gen locality key s let vernac_unset_option locality key = unset_option_value_gen locality key let vernac_add_option key lv = let f = function | StringRefValue s -> (get_string_table key)#add s | QualidRefValue locqid -> (get_ref_table key)#add locqid in try List.iter f lv with Not_found -> error_undeclared_key key let vernac_remove_option key lv = let f = function | StringRefValue s -> (get_string_table key)#remove s | QualidRefValue locqid -> (get_ref_table key)#remove locqid in try List.iter f lv with Not_found -> error_undeclared_key key let vernac_mem_option key lv = let f = function | StringRefValue s -> (get_string_table key)#mem s | QualidRefValue locqid -> (get_ref_table key)#mem locqid in try List.iter f lv with Not_found -> error_undeclared_key key let vernac_print_option key = try (get_ref_table key)#print with Not_found -> try (get_string_table key)#print with Not_found -> try print_option_value key with Not_found -> error_undeclared_key key let get_current_context_of_args = function | Some n -> get_goal_context n | None -> get_current_context () let vernac_check_may_eval redexp glopt rc = let (sigma, env) = get_current_context_of_args glopt in let sigma', c = interp_open_constr env sigma rc in let sigma' = Evarconv.solve_unif_constraints_with_heuristics env sigma' in Evarconv.check_problems_are_solved env sigma'; let sigma',nf = Evarutil.nf_evars_and_universes sigma' in let pl, uctx = Evd.universe_context sigma' in let env = Environ.push_context uctx (Evarutil.nf_env_evar sigma' env) in let c = nf c in let j = if Evarutil.has_undefined_evars sigma' c then Evarutil.j_nf_evar sigma' (Retyping.get_judgment_of env sigma' c) else (* OK to call kernel which does not support evars *) Arguments_renaming.rename_typing env c in match redexp with | None -> let l = Evar.Set.union (Evd.evars_of_term j.Environ.uj_val) (Evd.evars_of_term j.Environ.uj_type) in let j = { j with Environ.uj_type = Reductionops.nf_betaiota sigma' j.Environ.uj_type } in Feedback.msg_notice (print_judgment env sigma' j ++ pr_ne_evar_set (fnl () ++ str "where" ++ fnl ()) (mt ()) sigma' l ++ Printer.pr_universe_ctx sigma uctx) | Some r -> let (sigma',r_interp) = Hook.get f_interp_redexp env sigma' r in let redfun env evm c = let (redfun, _) = reduction_of_red_expr env r_interp in let evm = Sigma.Unsafe.of_evar_map evm in let Sigma (c, _, _) = redfun.Reductionops.e_redfun env evm c in c in Feedback.msg_notice (print_eval redfun env sigma' rc j) let vernac_declare_reduction locality s r = let local = make_locality locality in declare_red_expr local s (snd (Hook.get f_interp_redexp (Global.env()) Evd.empty r)) (* The same but avoiding the current goal context if any *) let vernac_global_check c = let env = Global.env() in let sigma = Evd.from_env env in let c,ctx = interp_constr env sigma c in let senv = Global.safe_env() in let cstrs = snd (UState.context_set ctx) in let senv = Safe_typing.add_constraints cstrs senv in let j = Safe_typing.typing senv c in let env = Safe_typing.env_of_safe_env senv in Feedback.msg_notice (print_safe_judgment env sigma j) let get_nth_goal n = let pf = get_pftreestate() in let {Evd.it=gls ; sigma=sigma; } = Proof.V82.subgoals pf in let gl = {Evd.it=List.nth gls (n-1) ; sigma = sigma; } in gl exception NoHyp (* Printing "About" information of a hypothesis of the current goal. We only print the type and a small statement to this comes from the goal. Precondition: there must be at least one current goal. *) let print_about_hyp_globs ref_or_by_not glnumopt = let open Context.Named.Declaration in try let gl,id = match glnumopt,ref_or_by_not with | None,AN (Ident (_loc,id)) -> (* goal number not given, catch any failure *) (try get_nth_goal 1,id with _ -> raise NoHyp) | Some n,AN (Ident (_loc,id)) -> (* goal number given, catch if wong *) (try get_nth_goal n,id with Failure _ -> errorlabstrm "print_about_hyp_globs" (str "No such goal: " ++ int n ++ str ".")) | _ , _ -> raise NoHyp in let hyps = pf_hyps gl in let decl = Context.Named.lookup id hyps in let natureofid = match decl with | LocalAssum _ -> "Hypothesis" | LocalDef (_,bdy,_) ->"Constant (let in)" in v 0 (pr_id id ++ str":" ++ pr_constr (get_type decl) ++ fnl() ++ fnl() ++ str natureofid ++ str " of the goal context.") with (* fallback to globals *) | NoHyp | Not_found -> print_about ref_or_by_not let vernac_print = let open Feedback in function | PrintTables -> msg_notice (print_tables ()) | PrintFullContext-> msg_notice (print_full_context_typ ()) | PrintSectionContext qid -> msg_notice (print_sec_context_typ qid) | PrintInspect n -> msg_notice (inspect n) | PrintGrammar ent -> msg_notice (Metasyntax.pr_grammar ent) | PrintLoadPath dir -> (* For compatibility ? *) msg_notice (print_loadpath dir) | PrintModules -> msg_notice (print_modules ()) | PrintModule qid -> print_module qid | PrintModuleType qid -> print_modtype qid | PrintNamespace ns -> print_namespace ns | PrintMLLoadPath -> msg_notice (Mltop.print_ml_path ()) | PrintMLModules -> msg_notice (Mltop.print_ml_modules ()) | PrintDebugGC -> msg_notice (Mltop.print_gc ()) | PrintName qid -> dump_global qid; msg_notice (print_name qid) | PrintGraph -> msg_notice (Prettyp.print_graph()) | PrintClasses -> msg_notice (Prettyp.print_classes()) | PrintTypeClasses -> msg_notice (Prettyp.print_typeclasses()) | PrintInstances c -> msg_notice (Prettyp.print_instances (smart_global c)) | PrintCoercions -> msg_notice (Prettyp.print_coercions()) | PrintCoercionPaths (cls,clt) -> msg_notice (Prettyp.print_path_between (cl_of_qualid cls) (cl_of_qualid clt)) | PrintCanonicalConversions -> msg_notice (Prettyp.print_canonical_projections ()) | PrintUniverses (b, dst) -> let univ = Global.universes () in let univ = if b then UGraph.sort_universes univ else univ in let pr_remaining = if Global.is_joined_environment () then mt () else str"There may remain asynchronous universe constraints" in begin match dst with | None -> msg_notice (UGraph.pr_universes Universes.pr_with_global_universes univ ++ pr_remaining) | Some s -> dump_universes_gen univ s end | PrintHint r -> msg_notice (Hints.pr_hint_ref (smart_global r)) | PrintHintGoal -> msg_notice (Hints.pr_applicable_hint ()) | PrintHintDbName s -> msg_notice (Hints.pr_hint_db_by_name s) | PrintHintDb -> msg_notice (Hints.pr_searchtable ()) | PrintScopes -> msg_notice (Notation.pr_scopes (Constrextern.without_symbols pr_lglob_constr)) | PrintScope s -> msg_notice (Notation.pr_scope (Constrextern.without_symbols pr_lglob_constr) s) | PrintVisibility s -> msg_notice (Notation.pr_visibility (Constrextern.without_symbols pr_lglob_constr) s) | PrintAbout (ref_or_by_not,glnumopt) -> msg_notice (print_about_hyp_globs ref_or_by_not glnumopt) | PrintImplicit qid -> dump_global qid; msg_notice (print_impargs qid) | PrintAssumptions (o,t,r) -> (* Prints all the axioms and section variables used by a term *) let gr = smart_global r in let cstr = printable_constr_of_global gr in let st = Conv_oracle.get_transp_state (Environ.oracle (Global.env())) in let nassums = Assumptions.assumptions st ~add_opaque:o ~add_transparent:t gr cstr in msg_notice (Printer.pr_assumptionset (Global.env ()) nassums) | PrintStrategy r -> print_strategy r let global_module r = let (loc,qid) = qualid_of_reference r in try Nametab.full_name_module qid with Not_found -> user_err_loc (loc, "global_module", str "Module/section " ++ pr_qualid qid ++ str " not found.") let interp_search_restriction = function | SearchOutside l -> (List.map global_module l, true) | SearchInside l -> (List.map global_module l, false) open Search let interp_search_about_item env = function | SearchSubPattern pat -> let _,pat = intern_constr_pattern env pat in GlobSearchSubPattern pat | SearchString (s,None) when Id.is_valid s -> GlobSearchString s | SearchString (s,sc) -> try let ref = Notation.interp_notation_as_global_reference Loc.ghost (fun _ -> true) s sc in GlobSearchSubPattern (Pattern.PRef ref) with UserError _ -> errorlabstrm "interp_search_about_item" (str "Unable to interp \"" ++ str s ++ str "\" either as a reference or as an identifier component") (* 05f22a5d6d5b8e3e80f1a37321708ce401834430 introduced the `search_output_name_only` option to avoid excessive printing when searching. The motivation was to make search usable for IDE completion, however, it is still too slow due to the non-indexed nature of the underlying search mechanism. In the future we should deprecate the option and provide a fast, indexed name-searching interface. *) let search_output_name_only = ref false let _ = declare_bool_option { optsync = true; optdepr = false; optname = "output-name-only search"; optkey = ["Search";"Output";"Name";"Only"]; optread = (fun () -> !search_output_name_only); optwrite = (:=) search_output_name_only } let vernac_search s gopt r = let r = interp_search_restriction r in let env,gopt = match gopt with | None -> (* 1st goal by default if it exists, otherwise no goal at all *) (try snd (Pfedit.get_goal_context 1) , Some 1 with _ -> Global.env (),None) (* if goal selector is given and wrong, then let exceptions be raised. *) | Some g -> snd (Pfedit.get_goal_context g) , Some g in let get_pattern c = snd (intern_constr_pattern env c) in let pr_search ref env c = let pr = pr_global ref in let pp = if !search_output_name_only then pr else begin let pc = pr_lconstr_env env Evd.empty c in hov 2 (pr ++ str":" ++ spc () ++ pc) end in Feedback.msg_notice pp in match s with | SearchPattern c -> Search.search_pattern gopt (get_pattern c) r pr_search | SearchRewrite c -> Search.search_rewrite gopt (get_pattern c) r pr_search | SearchHead c -> Search.search_by_head gopt (get_pattern c) r pr_search | SearchAbout sl -> Search.search_about gopt (List.map (on_snd (interp_search_about_item env)) sl) r pr_search let vernac_locate = let open Feedback in function | LocateAny (AN qid) -> msg_notice (print_located_qualid qid) | LocateTerm (AN qid) -> msg_notice (print_located_term qid) | LocateAny (ByNotation (_, ntn, sc)) (** TODO : handle Ltac notations *) | LocateTerm (ByNotation (_, ntn, sc)) -> msg_notice (Notation.locate_notation (Constrextern.without_symbols pr_lglob_constr) ntn sc) | LocateLibrary qid -> print_located_library qid | LocateModule qid -> msg_notice (print_located_module qid) | LocateTactic qid -> msg_notice (print_located_tactic qid) | LocateFile f -> msg_notice (locate_file f) let vernac_register id r = if Pfedit.refining () then error "Cannot register a primitive while in proof editing mode."; let t = (Constrintern.global_reference (snd id)) in if not (isConst t) then error "Register inline: a constant is expected"; let kn = destConst t in match r with | RegisterInline -> Global.register_inline (Univ.out_punivs kn) (********************) (* Proof management *) let vernac_focus gln = Proof_global.simple_with_current_proof (fun _ p -> match gln with | None -> Proof.focus focus_command_cond () 1 p | Some 0 -> CErrors.error "Invalid goal number: 0. Goal numbering starts with 1." | Some n -> Proof.focus focus_command_cond () n p) (* Unfocuses one step in the focus stack. *) let vernac_unfocus () = Proof_global.simple_with_current_proof (fun _ p -> Proof.unfocus command_focus p ()) (* Checks that a proof is fully unfocused. Raises an error if not. *) let vernac_unfocused () = let p = Proof_global.give_me_the_proof () in if Proof.unfocused p then Feedback.msg_notice (str"The proof is indeed fully unfocused.") else error "The proof is not fully unfocused." (* BeginSubproof / EndSubproof. BeginSubproof (vernac_subproof) focuses on the first goal, or the goal given as argument. EndSubproof (vernac_end_subproof) unfocuses from a BeginSubproof, provided that the proof of the goal has been completed. *) let subproof_kind = Proof.new_focus_kind () let subproof_cond = Proof.done_cond subproof_kind let vernac_subproof gln = Proof_global.simple_with_current_proof (fun _ p -> match gln with | None -> Proof.focus subproof_cond () 1 p | Some n -> Proof.focus subproof_cond () n p) let vernac_end_subproof () = Proof_global.simple_with_current_proof (fun _ p -> Proof.unfocus subproof_kind p ()) let vernac_bullet (bullet:Proof_global.Bullet.t) = Proof_global.simple_with_current_proof (fun _ p -> Proof_global.Bullet.put p bullet) let vernac_show = let open Feedback in function | ShowGoal goalref -> let info = match goalref with | OpenSubgoals -> pr_open_subgoals () | NthGoal n -> pr_nth_open_subgoal n | GoalId id -> pr_goal_by_id id | GoalUid id -> pr_goal_by_uid id in msg_notice info | ShowGoalImplicitly None -> Constrextern.with_implicits msg_notice (pr_open_subgoals ()) | ShowGoalImplicitly (Some n) -> Constrextern.with_implicits msg_notice (pr_nth_open_subgoal n) | ShowProof -> show_proof () | ShowNode -> show_node () | ShowScript -> Stm.show_script () | ShowExistentials -> show_top_evars () | ShowUniverses -> show_universes () | ShowTree -> show_prooftree () | ShowProofNames -> msg_notice (pr_sequence pr_id (Pfedit.get_all_proof_names())) | ShowIntros all -> show_intro all | ShowMatch id -> show_match id | ShowThesis -> show_thesis () let vernac_check_guard () = let pts = get_pftreestate () in let pfterm = List.hd (Proof.partial_proof pts) in let message = try let { Evd.it=gl ; sigma=sigma } = Proof.V82.top_goal pts in Inductiveops.control_only_guard (Goal.V82.env sigma gl) pfterm; (str "The condition holds up to here") with UserError(_,s) -> (str ("Condition violated: ") ++s) in Feedback.msg_notice message exception End_of_input let vernac_load interp fname = let interp x = let proof_mode = Proof_global.get_default_proof_mode_name () in Proof_global.activate_proof_mode proof_mode; interp x in let parse_sentence = Flags.with_option Flags.we_are_parsing (fun po -> match Pcoq.Gram.entry_parse Pcoq.main_entry po with | Some x -> x | None -> raise End_of_input) in let fname = Envars.expand_path_macros ~warn:(fun x -> Feedback.msg_warning (str x)) fname in let fname = CUnix.make_suffix fname ".v" in let input = let longfname = Loadpath.locate_file fname in let in_chan = open_utf8_file_in longfname in Pcoq.Gram.parsable ~file:longfname (Stream.of_channel in_chan) in try while true do interp (snd (parse_sentence input)) done with End_of_input -> () (* "locality" is the prefix "Local" attribute, while the "local" component * is the outdated/deprecated "Local" attribute of some vernacular commands * still parsed as the obsolete_locality grammar entry for retrocompatibility. * loc is the Loc.t of the vernacular command being interpreted. *) let interp ?proof ~loc locality poly c = prerr_endline (fun () -> "interpreting: " ^ Pp.string_of_ppcmds (Ppvernac.pr_vernac c)); match c with (* Done later in this file *) | VernacLoad _ -> assert false | VernacFail _ -> assert false | VernacTime _ -> assert false | VernacRedirect _ -> assert false | VernacTimeout _ -> assert false | VernacStm _ -> assert false | VernacError e -> raise e (* Syntax *) | VernacSyntaxExtension (local,sl) -> vernac_syntax_extension locality local sl | VernacDelimiters (sc,lr) -> vernac_delimiters sc lr | VernacBindScope (sc,rl) -> vernac_bind_scope sc rl | VernacOpenCloseScope (local, s) -> vernac_open_close_scope locality local s | VernacArgumentsScope (qid,scl) -> vernac_arguments_scope locality qid scl | VernacInfix (local,mv,qid,sc) -> vernac_infix locality local mv qid sc | VernacNotation (local,c,infpl,sc) -> vernac_notation locality local c infpl sc | VernacNotationAddFormat(n,k,v) -> Metasyntax.add_notation_extra_printing_rule n k v (* Gallina *) | VernacDefinition (k,lid,d) -> vernac_definition locality poly k lid d | VernacStartTheoremProof (k,l,top) -> vernac_start_proof locality poly k l top | VernacEndProof e -> vernac_end_proof ?proof e | VernacExactProof c -> vernac_exact_proof c | VernacAssumption (stre,nl,l) -> vernac_assumption locality poly stre l nl | VernacInductive (priv,finite,l) -> vernac_inductive poly priv finite l | VernacFixpoint (local, l) -> vernac_fixpoint locality poly local l | VernacCoFixpoint (local, l) -> vernac_cofixpoint locality poly local l | VernacScheme l -> vernac_scheme l | VernacCombinedScheme (id, l) -> vernac_combined_scheme id l | VernacUniverse l -> vernac_universe loc poly l | VernacConstraint l -> vernac_constraint loc poly l (* Modules *) | VernacDeclareModule (export,lid,bl,mtyo) -> vernac_declare_module export lid bl mtyo | VernacDefineModule (export,lid,bl,mtys,mexprl) -> vernac_define_module export lid bl mtys mexprl | VernacDeclareModuleType (lid,bl,mtys,mtyo) -> vernac_declare_module_type lid bl mtys mtyo | VernacInclude in_asts -> vernac_include in_asts (* Gallina extensions *) | VernacBeginSection lid -> vernac_begin_section lid | VernacEndSegment lid -> vernac_end_segment lid | VernacNameSectionHypSet (lid, set) -> vernac_name_sec_hyp lid set | VernacRequire (from, export, qidl) -> vernac_require from export qidl | VernacImport (export,qidl) -> vernac_import export qidl | VernacCanonical qid -> vernac_canonical qid | VernacCoercion (local,r,s,t) -> vernac_coercion locality poly local r s t | VernacIdentityCoercion (local,(_,id),s,t) -> vernac_identity_coercion locality poly local id s t (* Type classes *) | VernacInstance (abst, sup, inst, props, info) -> vernac_instance abst locality poly sup inst props info | VernacContext sup -> vernac_context poly sup | VernacDeclareInstances insts -> vernac_declare_instances locality insts | VernacDeclareClass id -> vernac_declare_class id (* Solving *) | VernacSolveExistential (n,c) -> vernac_solve_existential n c (* Auxiliary file and library management *) | VernacAddLoadPath (isrec,s,alias) -> vernac_add_loadpath isrec s alias | VernacRemoveLoadPath s -> vernac_remove_loadpath s | VernacAddMLPath (isrec,s) -> vernac_add_ml_path isrec s | VernacDeclareMLModule l -> vernac_declare_ml_module locality l | VernacChdir s -> vernac_chdir s (* State management *) | VernacWriteState s -> vernac_write_state s | VernacRestoreState s -> vernac_restore_state s (* Resetting *) | VernacResetName _ -> anomaly (str "VernacResetName not handled by Stm") | VernacResetInitial -> anomaly (str "VernacResetInitial not handled by Stm") | VernacBack _ -> anomaly (str "VernacBack not handled by Stm") | VernacBackTo _ -> anomaly (str "VernacBackTo not handled by Stm") (* Commands *) | VernacCreateHintDb (dbname,b) -> vernac_create_hintdb locality dbname b | VernacRemoveHints (dbnames,ids) -> vernac_remove_hints locality dbnames ids | VernacHints (local,dbnames,hints) -> vernac_hints locality poly local dbnames hints | VernacSyntacticDefinition (id,c,local,b) -> vernac_syntactic_definition locality id c local b | VernacDeclareImplicits (qid,l) -> vernac_declare_implicits locality qid l | VernacArguments (qid, args, more_implicits, nargs, flags) -> vernac_arguments locality qid args more_implicits nargs flags | VernacReserve bl -> vernac_reserve bl | VernacGeneralizable gen -> vernac_generalizable locality gen | VernacSetOpacity qidl -> vernac_set_opacity locality qidl | VernacSetStrategy l -> vernac_set_strategy locality l | VernacSetOption (key,v) -> vernac_set_option locality key v | VernacSetAppendOption (key,v) -> vernac_set_append_option locality key v | VernacUnsetOption key -> vernac_unset_option locality key | VernacRemoveOption (key,v) -> vernac_remove_option key v | VernacAddOption (key,v) -> vernac_add_option key v | VernacMemOption (key,v) -> vernac_mem_option key v | VernacPrintOption key -> vernac_print_option key | VernacCheckMayEval (r,g,c) -> vernac_check_may_eval r g c | VernacDeclareReduction (s,r) -> vernac_declare_reduction locality s r | VernacGlobalCheck c -> vernac_global_check c | VernacPrint p -> vernac_print p | VernacSearch (s,g,r) -> vernac_search s g r | VernacLocate l -> vernac_locate l | VernacRegister (id, r) -> vernac_register id r | VernacComments l -> if_verbose Feedback.msg_info (str "Comments ok\n") (* The STM should handle that, but LOAD bypasses the STM... *) | VernacAbort id -> CErrors.errorlabstrm "" (str "Abort cannot be used through the Load command") | VernacAbortAll -> CErrors.errorlabstrm "" (str "AbortAll cannot be used through the Load command") | VernacRestart -> CErrors.errorlabstrm "" (str "Restart cannot be used through the Load command") | VernacUndo _ -> CErrors.errorlabstrm "" (str "Undo cannot be used through the Load command") | VernacUndoTo _ -> CErrors.errorlabstrm "" (str "UndoTo cannot be used through the Load command") | VernacBacktrack _ -> CErrors.errorlabstrm "" (str "Backtrack cannot be used through the Load command") (* Proof management *) | VernacGoal t -> vernac_start_proof locality poly Theorem [None,([],t,None)] false | VernacFocus n -> vernac_focus n | VernacUnfocus -> vernac_unfocus () | VernacUnfocused -> vernac_unfocused () | VernacBullet b -> vernac_bullet b | VernacSubproof n -> vernac_subproof n | VernacEndSubproof -> vernac_end_subproof () | VernacShow s -> vernac_show s | VernacCheckGuard -> vernac_check_guard () | VernacProof (None, None) -> Aux_file.record_in_aux_at loc "VernacProof" "tac:no using:no" | VernacProof (Some tac, None) -> Aux_file.record_in_aux_at loc "VernacProof" "tac:yes using:no"; vernac_set_end_tac tac | VernacProof (None, Some l) -> Aux_file.record_in_aux_at loc "VernacProof" "tac:no using:yes"; vernac_set_used_variables l | VernacProof (Some tac, Some l) -> Aux_file.record_in_aux_at loc "VernacProof" "tac:yes using:yes"; vernac_set_end_tac tac; vernac_set_used_variables l | VernacProofMode mn -> Proof_global.set_proof_mode mn (* Toplevel control *) | VernacToplevelControl e -> raise e (* Extensions *) | VernacExtend (opn,args) -> Vernacinterp.call ?locality (opn,args) (* Handled elsewhere *) | VernacProgram _ | VernacPolymorphic _ | VernacLocal _ -> assert false (* Vernaculars that take a locality flag *) let check_vernac_supports_locality c l = match l, c with | None, _ -> () | Some _, ( VernacOpenCloseScope _ | VernacSyntaxExtension _ | VernacInfix _ | VernacNotation _ | VernacDefinition _ | VernacFixpoint _ | VernacCoFixpoint _ | VernacAssumption _ | VernacStartTheoremProof _ | VernacCoercion _ | VernacIdentityCoercion _ | VernacInstance _ | VernacDeclareInstances _ | VernacDeclareMLModule _ | VernacCreateHintDb _ | VernacRemoveHints _ | VernacHints _ | VernacSyntacticDefinition _ | VernacArgumentsScope _ | VernacDeclareImplicits _ | VernacArguments _ | VernacGeneralizable _ | VernacSetOpacity _ | VernacSetStrategy _ | VernacSetOption _ | VernacSetAppendOption _ | VernacUnsetOption _ | VernacDeclareReduction _ | VernacExtend _ | VernacInductive _) -> () | Some _, _ -> CErrors.error "This command does not support Locality" (* Vernaculars that take a polymorphism flag *) let check_vernac_supports_polymorphism c p = match p, c with | None, _ -> () | Some _, ( VernacDefinition _ | VernacFixpoint _ | VernacCoFixpoint _ | VernacAssumption _ | VernacInductive _ | VernacStartTheoremProof _ | VernacCoercion _ | VernacIdentityCoercion _ | VernacInstance _ | VernacDeclareInstances _ | VernacHints _ | VernacContext _ | VernacExtend _ | VernacUniverse _ | VernacConstraint _) -> () | Some _, _ -> CErrors.error "This command does not support Polymorphism" let enforce_polymorphism = function | None -> Flags.is_universe_polymorphism () | Some b -> Flags.make_polymorphic_flag b; b (** A global default timeout, controlled by option "Set Default Timeout n". Use "Unset Default Timeout" to deactivate it (or set it to 0). *) let default_timeout = ref None let _ = Goptions.declare_int_option { Goptions.optsync = true; Goptions.optdepr = false; Goptions.optname = "the default timeout"; Goptions.optkey = ["Default";"Timeout"]; Goptions.optread = (fun () -> !default_timeout); Goptions.optwrite = ((:=) default_timeout) } (** When interpreting a command, the current timeout is initially the default one, but may be modified locally by a Timeout command. *) let current_timeout = ref None let vernac_timeout f = match !current_timeout, !default_timeout with | Some n, _ | None, Some n -> let f () = f (); current_timeout := None in Control.timeout n f Timeout | None, None -> f () let restore_timeout () = current_timeout := None let locate_if_not_already loc (e, info) = match Loc.get_loc info with | None -> (e, Loc.add_loc info loc) | Some l -> if Loc.is_ghost l then (e, Loc.add_loc info loc) else (e, info) exception HasNotFailed exception HasFailed of std_ppcmds let with_fail b f = if not b then f () else begin try (* If the command actually works, ignore its effects on the state. * Note that error has to be printed in the right state, hence * within the purified function *) Future.purify (fun v -> try f v; raise HasNotFailed with | HasNotFailed as e -> raise e | e -> let e = CErrors.push e in raise (HasFailed (CErrors.iprint (ExplainErr.process_vernac_interp_error ~allow_uncaught:false ~with_header:false e)))) () with e when CErrors.noncritical e -> let (e, _) = CErrors.push e in match e with | HasNotFailed -> errorlabstrm "Fail" (str "The command has not failed!") | HasFailed msg -> if is_verbose () || !test_mode || !ide_slave then Feedback.msg_info (str "The command has indeed failed with message:" ++ fnl () ++ msg) | _ -> assert false end let interp ?(verbosely=true) ?proof (loc,c) = let orig_program_mode = Flags.is_program_mode () in let rec aux ?locality ?polymorphism isprogcmd = function | VernacProgram c when not isprogcmd -> aux ?locality ?polymorphism true c | VernacProgram _ -> CErrors.error "Program mode specified twice" | VernacLocal (b, c) when Option.is_empty locality -> aux ~locality:b ?polymorphism isprogcmd c | VernacPolymorphic (b, c) when polymorphism = None -> aux ?locality ~polymorphism:b isprogcmd c | VernacPolymorphic (b, c) -> CErrors.error "Polymorphism specified twice" | VernacLocal _ -> CErrors.error "Locality specified twice" | VernacStm (Command c) -> aux ?locality ?polymorphism isprogcmd c | VernacStm (PGLast c) -> aux ?locality ?polymorphism isprogcmd c | VernacStm _ -> assert false (* Done by Stm *) | VernacFail v -> with_fail true (fun () -> aux ?locality ?polymorphism isprogcmd v) | VernacTimeout (n,v) -> current_timeout := Some n; aux ?locality ?polymorphism isprogcmd v | VernacRedirect (s, (_,v)) -> Feedback.with_output_to_file s (aux false) v | VernacTime (_,v) -> System.with_time !Flags.time (aux ?locality ?polymorphism isprogcmd) v; | VernacLoad (_,fname) -> vernac_load (aux false) fname | c -> check_vernac_supports_locality c locality; check_vernac_supports_polymorphism c polymorphism; let poly = enforce_polymorphism polymorphism in Obligations.set_program_mode isprogcmd; try vernac_timeout begin fun () -> if verbosely then Flags.verbosely (interp ?proof ~loc locality poly) c else Flags.silently (interp ?proof ~loc locality poly) c; if orig_program_mode || not !Flags.program_mode || isprogcmd then Flags.program_mode := orig_program_mode; ignore (Flags.use_polymorphic_flag ()) end with | reraise when (match reraise with | Timeout -> true | e -> CErrors.noncritical e) -> let e = CErrors.push reraise in let e = locate_if_not_already loc e in let () = restore_timeout () in Flags.program_mode := orig_program_mode; ignore (Flags.use_polymorphic_flag ()); iraise e in if verbosely then Flags.verbosely (aux false) c else aux false c let () = Hook.set Stm.interp_hook interp let () = Hook.set Stm.with_fail_hook with_fail