(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* [] | (l :: ls) -> l :: (take (n-1) ls) (* count the number of spaces at the beginning of a string *) let count_spaces s = let n = String.length s in let rec count c i = if i == n then c,i else match s.[i] with | '\t' -> count (c + (8 - (c mod 8))) (i + 1) | ' ' -> count (c + 1) (i + 1) | _ -> c,i in count 0 0 let remove_newline s = let n = String.length s in let rec count i = if i == n || s.[i] <> '\n' then i else count (i + 1) in let i = count 0 in i, String.sub s i (n - i) let count_dashes s = let c = ref 0 in for i = 0 to String.length s - 1 do if s.[i] = '-' then incr c done; !c let cut_head_tail_spaces s = let n = String.length s in let rec look_up i = if i == n || s.[i] <> ' ' then i else look_up (i+1) in let rec look_dn i = if i == -1 || s.[i] <> ' ' then i else look_dn (i-1) in let l = look_up 0 in let r = look_dn (n-1) in if l <= r then String.sub s l (r-l+1) else s let sec_title s = let rec count lev i = if s.[i] = '*' then count (succ lev) (succ i) else let t = String.sub s i (String.length s - i) in lev, cut_head_tail_spaces t in count 0 (String.index s '*') let strip_eol s = let eol = s.[String.length s - 1] = '\n' in (eol, if eol then String.sub s 1 (String.length s - 1) else s) let formatted = ref false let brackets = ref 0 let comment_level = ref 0 let in_proof = ref None let in_env start stop = let r = ref false in let start_env () = r := true; start () in let stop_env () = if !r then stop (); r := false in (fun x -> !r), start_env, stop_env let _, start_emph, stop_emph = in_env Output.start_emph Output.stop_emph let in_quote, start_quote, stop_quote = in_env Output.start_quote Output.stop_quote let url_buffer = Buffer.create 40 let url_name_buffer = Buffer.create 40 let backtrack lexbuf = lexbuf.lex_curr_pos <- lexbuf.lex_start_pos; lexbuf.lex_curr_p <- lexbuf.lex_start_p let backtrack_past_newline lexbuf = let buf = lexeme lexbuf in let splits = Str.bounded_split_delim (Str.regexp "['\n']") buf 2 in match splits with | [] -> () | (_ :: []) -> () | (s1 :: rest :: _) -> let length_skip = 1 + String.length s1 in lexbuf.lex_curr_pos <- lexbuf.lex_start_pos + length_skip (* saving/restoring the PP state *) type state = { st_gallina : bool; st_light : bool } let state_stack = Stack.create () let save_state () = Stack.push { st_gallina = !Cdglobals.gallina; st_light = !Cdglobals.light } state_stack let restore_state () = let s = Stack.pop state_stack in Cdglobals.gallina := s.st_gallina; Cdglobals.light := s.st_light let begin_show () = save_state (); Cdglobals.gallina := false; Cdglobals.light := false let end_show () = restore_state () (* Reset the globals *) let reset () = formatted := false; brackets := 0; comment_level := 0 (* erasing of Section/End *) let section_re = Str.regexp "[ \t]*Section" let end_re = Str.regexp "[ \t]*End" let is_section s = Str.string_match section_re s 0 let is_end s = Str.string_match end_re s 0 let sections_to_close = ref 0 let section_or_end s = if is_section s then begin incr sections_to_close; true end else if is_end s then begin if !sections_to_close > 0 then begin decr sections_to_close; true end else false end else true (* for item lists *) type list_compare = | Before | StartLevel of int | InLevel of int * bool (* Before : we're before any levels StartLevel : at the same column as the dash in a level InLevel : after the dash of this level, but before any deeper dashes. bool is true if this is the last level *) let find_level levels cur_indent = match levels with | [] -> Before | (l::ls) -> if cur_indent < l then Before else (* cur_indent will never be less than the head of the list *) let rec findind ls n = match ls with | [] -> InLevel (n,true) | (l :: []) -> if cur_indent = l then StartLevel n else InLevel (n,true) | (l1 :: l2 :: ls) -> if cur_indent = l1 then StartLevel n else if cur_indent < l2 then InLevel (n,false) else findind (l2 :: ls) (n+1) in findind (l::ls) 1 type is_start_list = | Rule | List of int | Neither let check_start_list str = let n_dashes = count_dashes str in let (n_spaces,_) = count_spaces str in if n_dashes >= 4 && not !Cdglobals.plain_comments then Rule else if n_dashes = 1 && not !Cdglobals.plain_comments then List n_spaces else Neither (* examine a string for subtitleness *) let subtitle m s = match Str.split_delim (Str.regexp ":") s with | [] -> false | (name::_) -> if (cut_head_tail_spaces name) = m then true else false (* tokens pretty-print *) let token_buffer = Buffer.create 1024 let token_re = Str.regexp "[ \t]*(\\*\\*[ \t]+printing[ \t]+\\([^ \t]+\\)" let printing_token_re = Str.regexp "[ \t]*\\(\\(%\\([^%]*\\)%\\)\\|\\(\\$[^$]*\\$\\)\\)?[ \t]*\\(#\\(\\(&#\\|[^#]\\)*\\)#\\)?" let add_printing_token toks pps = try if Str.string_match token_re toks 0 then let tok = Str.matched_group 1 toks in if Str.string_match printing_token_re pps 0 then let pp = (try Some (Str.matched_group 3 pps) with _ -> try Some (Str.matched_group 4 pps) with _ -> None), (try Some (Str.matched_group 6 pps) with _ -> None) in Output.add_printing_token tok pp with _ -> () let remove_token_re = Str.regexp "[ \t]*(\\*\\*[ \t]+remove[ \t]+printing[ \t]+\\([^ \t]+\\)[ \t]*\\*)" let remove_printing_token toks = try if Str.string_match remove_token_re toks 0 then let tok = Str.matched_group 1 toks in Output.remove_printing_token tok with _ -> () let output_indented_keyword s lexbuf = let nbsp,isp = count_spaces s in Output.indentation nbsp; let s = String.sub s isp (String.length s - isp) in Output.keyword s (lexeme_start lexbuf + isp) let only_gallina () = !Cdglobals.gallina && !in_proof <> None let parse_comments () = !Cdglobals.parse_comments && not (only_gallina ()) } (*s Regular expressions *) let space = [' ' '\t'] let space_nl = [' ' '\t' '\n' '\r'] let nl = "\r\n" | '\n' let firstchar = ['A'-'Z' 'a'-'z' '_'] | (* superscript 1 *) '\194' '\185' | (* utf-8 latin 1 supplement *) '\195' ['\128'-'\150'] | '\195' ['\152'-'\182'] | '\195' ['\184'-'\191'] | (* utf-8 letterlike symbols *) '\206' (['\145'-'\161'] | ['\163'-'\191']) | '\207' (['\145'-'\191']) | '\226' ('\130' [ '\128'-'\137' ] (* subscripts *) | '\129' [ '\176'-'\187' ] (* superscripts *) | '\132' ['\128'-'\191'] | '\133' ['\128'-'\143']) let identchar = firstchar | ['\'' '0'-'9' '@' ] let id = firstchar identchar* let pfx_id = (id '.')* let identifier = id | pfx_id id (* This misses unicode stuff, and it adds "[" and "]". It's only an approximation of idents - used for detecting whether an underscore is part of an identifier or meant to indicate emphasis *) let nonidentchar = [^ 'A'-'Z' 'a'-'z' '_' '[' ']' '\'' '0'-'9' '@' ] let printing_token = [^ ' ' '\t']* let thm_token = "Theorem" | "Lemma" | "Fact" | "Remark" | "Corollary" | "Proposition" | "Property" | "Goal" let prf_token = "Next" space+ "Obligation" | "Proof" (space* "." | space+ "with" | space+ "using") let immediate_prf_token = (* Approximation of a proof term, if not in the prf_token case *) (* To be checked after prf_token *) "Proof" space* [^ '.' 'w' 'u'] let def_token = "Definition" | "Let" | "Class" | "SubClass" | "Example" | "Fixpoint" | "Function" | "Boxed" | "CoFixpoint" | "Record" | "Variant" | "Structure" | "Scheme" | "Inductive" | "CoInductive" | "Equations" | "Instance" | "Declare" space+ "Instance" | "Global" space+ "Instance" | "Functional" space+ "Scheme" let decl_token = "Hypothesis" | "Hypotheses" | "Parameter" 's'? | "Axiom" 's'? | "Conjecture" let gallina_ext = "Module" | "Include" space+ "Type" | "Include" | "Declare" space+ "Module" | "Transparent" | "Opaque" | "Canonical" | "Coercion" | "Identity" | "Implicit" | "Tactic" space+ "Notation" | "Section" | "Context" | "Variable" 's'? | ("Hypothesis" | "Hypotheses") | "End" let notation_kw = "Notation" | "Infix" | "Reserved" space+ "Notation" let commands = "Pwd" | "Cd" | "Drop" | "ProtectedLoop" | "Quit" | "Restart" | "Load" | "Add" | "Remove" space+ "Loadpath" | "Print" | "Inspect" | "About" | "SearchAbout" | "SearchRewrite" | "Search" | "Locate" | "Eval" | "Reset" | "Check" | "Type" | "Section" | "Chapter" | "Variable" 's'? | ("Hypothesis" | "Hypotheses") | "End" let end_kw = immediate_prf_token | "Qed" | "Defined" | "Save" | "Admitted" | "Abort" let extraction = "Extraction" | "Recursive" space+ "Extraction" | "Extract" let gallina_kw = thm_token | def_token | decl_token | gallina_ext | commands | extraction let prog_kw = "Program" space+ gallina_kw | "Obligation" | "Obligations" | "Solve" let hint_kw = "Extern" | "Rewrite" | "Resolve" | "Immediate" | "Transparent" | "Opaque" | "Unfold" | "Constructors" let set_kw = "Printing" space+ ("Coercions" | "Universes" | "All") | "Implicit" space+ "Arguments" let gallina_kw_to_hide = "Implicit" space+ "Arguments" | ("Local" space+)? "Ltac" | "Require" | "Import" | "Export" | "Load" | "Hint" space+ hint_kw | "Open" | "Close" | "Delimit" | "Transparent" | "Opaque" | ("Declare" space+ ("Morphism" | "Step") ) | ("Set" | "Unset") space+ set_kw | "Declare" space+ ("Left" | "Right") space+ "Step" | "Debug" space+ ("On" | "Off") let section = "*" | "**" | "***" | "****" let item_space = " " let begin_hide = "(*" space* "begin" space+ "hide" space* "*)" space* nl let end_hide = "(*" space* "end" space+ "hide" space* "*)" space* nl let begin_show = "(*" space* "begin" space+ "show" space* "*)" space* nl let end_show = "(*" space* "end" space+ "show" space* "*)" space* nl (* let begin_verb = "(*" space* "begin" space+ "verb" space* "*)" let end_verb = "(*" space* "end" space+ "verb" space* "*)" *) (*s Scanning Coq, at beginning of line *) rule coq_bol = parse | space* nl+ { if not (!in_proof <> None && (!Cdglobals.gallina || !Cdglobals.light)) then Output.empty_line_of_code (); coq_bol lexbuf } | space* "(**" space_nl { Output.end_coq (); Output.start_doc (); let eol = doc_bol lexbuf in Output.end_doc (); Output.start_coq (); if eol then coq_bol lexbuf else coq lexbuf } | space* "Comments" space_nl { Output.end_coq (); Output.start_doc (); comments lexbuf; Output.end_doc (); Output.start_coq (); coq lexbuf } | space* begin_hide { skip_hide lexbuf; coq_bol lexbuf } | space* begin_show { begin_show (); coq_bol lexbuf } | space* end_show { end_show (); coq_bol lexbuf } | space* (("Local"|"Global") space+)? gallina_kw_to_hide { let s = lexeme lexbuf in if !Cdglobals.light && section_or_end s then let eol = skip_to_dot lexbuf in if eol then (coq_bol lexbuf) else coq lexbuf else begin output_indented_keyword s lexbuf; let eol = body lexbuf in if eol then coq_bol lexbuf else coq lexbuf end } | space* thm_token { let s = lexeme lexbuf in output_indented_keyword s lexbuf; let eol = body lexbuf in in_proof := Some eol; if eol then coq_bol lexbuf else coq lexbuf } | space* prf_token { in_proof := Some true; let eol = if not !Cdglobals.gallina then begin backtrack lexbuf; body_bol lexbuf end else let s = lexeme lexbuf in if s.[String.length s - 1] = '.' then false else skip_to_dot lexbuf in if eol then coq_bol lexbuf else coq lexbuf } | space* end_kw { let eol = if not (only_gallina ()) then begin backtrack lexbuf; body_bol lexbuf end else skip_to_dot lexbuf in in_proof := None; if eol then coq_bol lexbuf else coq lexbuf } | space* gallina_kw { in_proof := None; let s = lexeme lexbuf in output_indented_keyword s lexbuf; let eol= body lexbuf in if eol then coq_bol lexbuf else coq lexbuf } | space* prog_kw { in_proof := None; let s = lexeme lexbuf in output_indented_keyword s lexbuf; let eol= body lexbuf in if eol then coq_bol lexbuf else coq lexbuf } | space* notation_kw { let s = lexeme lexbuf in output_indented_keyword s lexbuf; let eol= start_notation_string lexbuf in if eol then coq_bol lexbuf else coq lexbuf } | space* "(**" space+ "printing" space+ printing_token space+ { let tok = lexeme lexbuf in let s = printing_token_body lexbuf in add_printing_token tok s; coq_bol lexbuf } | space* "(**" space+ "printing" space+ { eprintf "warning: bad 'printing' command at character %d\n" (lexeme_start lexbuf); flush stderr; comment_level := 1; ignore (comment lexbuf); coq_bol lexbuf } | space* "(**" space+ "remove" space+ "printing" space+ printing_token space* "*)" { remove_printing_token (lexeme lexbuf); coq_bol lexbuf } | space* "(**" space+ "remove" space+ "printing" space+ { eprintf "warning: bad 'remove printing' command at character %d\n" (lexeme_start lexbuf); flush stderr; comment_level := 1; ignore (comment lexbuf); coq_bol lexbuf } | space* "(*" { comment_level := 1; let eol = if parse_comments () then begin let s = lexeme lexbuf in let nbsp, isp = count_spaces s in Output.indentation nbsp; Output.start_comment (); comment lexbuf end else skipped_comment lexbuf in if eol then coq_bol lexbuf else coq lexbuf } | eof { () } | _ { let eol = if not !Cdglobals.gallina then begin backtrack lexbuf; body_bol lexbuf end else skip_to_dot_or_brace lexbuf in if eol then coq_bol lexbuf else coq lexbuf } (*s Scanning Coq elsewhere *) and coq = parse | nl { if not (only_gallina ()) then Output.line_break(); coq_bol lexbuf } | "(**" space_nl { Output.end_coq (); Output.start_doc (); let eol = doc_bol lexbuf in Output.end_doc (); Output.start_coq (); if eol then coq_bol lexbuf else coq lexbuf } | "(*" { comment_level := 1; let eol = if parse_comments () then begin Output.start_comment (); comment lexbuf end else skipped_comment lexbuf in if eol then coq_bol lexbuf else coq lexbuf } | nl+ space* "]]" { if not !formatted then begin (* Isn't this an anomaly *) let s = lexeme lexbuf in let nlsp,s = remove_newline s in let nbsp,isp = count_spaces s in Output.indentation nbsp; let loc = lexeme_start lexbuf + isp + nlsp in Output.sublexer ']' loc; Output.sublexer ']' (loc+1); coq lexbuf end } | eof { () } | (("Local"|"Global") space+)? gallina_kw_to_hide { let s = lexeme lexbuf in if !Cdglobals.light && section_or_end s then begin let eol = skip_to_dot lexbuf in if eol then coq_bol lexbuf else coq lexbuf end else begin Output.ident s None; let eol=body lexbuf in if eol then coq_bol lexbuf else coq lexbuf end } | prf_token { let eol = if not !Cdglobals.gallina then begin backtrack lexbuf; body lexbuf end else let s = lexeme lexbuf in let eol = if s.[String.length s - 1] = '.' then false else skip_to_dot lexbuf in eol in if eol then coq_bol lexbuf else coq lexbuf } | end_kw { let eol = if not !Cdglobals.gallina then begin backtrack lexbuf; body lexbuf end else let eol = skip_to_dot lexbuf in if !in_proof <> Some true && eol then Output.line_break (); eol in in_proof := None; if eol then coq_bol lexbuf else coq lexbuf } | gallina_kw { let s = lexeme lexbuf in Output.ident s None; let eol = body lexbuf in if eol then coq_bol lexbuf else coq lexbuf } | notation_kw { let s = lexeme lexbuf in Output.ident s None; let eol= start_notation_string lexbuf in if eol then coq_bol lexbuf else coq lexbuf } | prog_kw { let s = lexeme lexbuf in Output.ident s None; let eol = body lexbuf in if eol then coq_bol lexbuf else coq lexbuf } | space+ { Output.char ' '; coq lexbuf } | eof { () } | _ { let eol = if not !Cdglobals.gallina then begin backtrack lexbuf; body lexbuf end else skip_to_dot_or_brace lexbuf in if eol then coq_bol lexbuf else coq lexbuf} (*s Scanning documentation, at beginning of line *) and doc_bol = parse | space* section space+ ([^'\n' '*'] | '*'+ [^'\n' ')' '*'])* ('*'+ '\n')? { let eol, lex = strip_eol (lexeme lexbuf) in let lev, s = sec_title lex in if (!Cdglobals.lib_subtitles) && (subtitle (Output.get_module false) s) then () else Output.section lev (fun () -> ignore (doc None (from_string s))); if eol then doc_bol lexbuf else doc None lexbuf } | space_nl* '-'+ { let buf' = lexeme lexbuf in let bufs = Str.split_delim (Str.regexp "['\n']") buf' in let lines = (List.length bufs) - 1 in let line = match bufs with | [] -> eprintf "Internal error bad_split1 - please report\n"; exit 1 | _ -> List.nth bufs lines in match check_start_list line with | Neither -> backtrack_past_newline lexbuf; doc None lexbuf | List n -> if lines > 0 then Output.paragraph (); Output.item 1; doc (Some [n]) lexbuf | Rule -> Output.rule (); doc None lexbuf } | space* nl+ { Output.paragraph (); doc_bol lexbuf } | "<<" space* { Output.start_verbatim false; verbatim 0 false lexbuf; doc_bol lexbuf } | eof { true } | '_' { if !Cdglobals.plain_comments then Output.char '_' else start_emph (); doc None lexbuf } | _ { backtrack lexbuf; doc None lexbuf } (*s Scanning lists - using whitespace *) and doc_list_bol indents = parse | space* '-' { let (n_spaces,_) = count_spaces (lexeme lexbuf) in match find_level indents n_spaces with | Before -> backtrack lexbuf; doc_bol lexbuf | StartLevel n -> Output.item n; doc (Some (take n indents)) lexbuf | InLevel (n,true) -> let items = List.length indents in Output.item (items+1); doc (Some (List.append indents [n_spaces])) lexbuf | InLevel (_,false) -> backtrack lexbuf; doc_bol lexbuf } | "<<" space* { Output.start_verbatim false; verbatim 0 false lexbuf; doc_list_bol indents lexbuf } | "[[" nl { formatted := true; Output.start_inline_coq_block (); ignore(body_bol lexbuf); Output.end_inline_coq_block (); formatted := false; doc_list_bol indents lexbuf } | "[[[" nl { inf_rules (Some indents) lexbuf } | space* nl space* '-' { (* Like in the doc_bol production, these two productions exist only to deal properly with whitespace *) Output.paragraph (); backtrack_past_newline lexbuf; doc_list_bol indents lexbuf } | space* nl space* _ { let buf' = lexeme lexbuf in let buf = let bufs = Str.split_delim (Str.regexp "['\n']") buf' in match bufs with | (_ :: s :: []) -> s | (_ :: _ :: s :: _) -> s | _ -> eprintf "Internal error bad_split2 - please report\n"; exit 1 in let (n_spaces,_) = count_spaces buf in match find_level indents n_spaces with | StartLevel 1 | Before -> (* Here we were at the beginning of a line, and it was blank. The next line started before any list items. So: insert a paragraph for the empty line, rewind to whatever's just after the newline, then toss over to doc_bol for whatever comes next. *) Output.stop_item (); Output.paragraph (); backtrack_past_newline lexbuf; doc_bol lexbuf | StartLevel _ | InLevel _ -> Output.paragraph (); backtrack_past_newline lexbuf; doc_list_bol indents lexbuf } | space* _ { let (n_spaces,_) = count_spaces (lexeme lexbuf) in match find_level indents n_spaces with | Before -> Output.stop_item (); backtrack lexbuf; doc_bol lexbuf | StartLevel n -> Output.reach_item_level (n-1); backtrack lexbuf; doc (Some (take (n-1) indents)) lexbuf | InLevel (n,_) -> Output.reach_item_level n; backtrack lexbuf; doc (Some (take n indents)) lexbuf } (*s Scanning documentation elsewhere *) and doc indents = parse | nl { Output.char '\n'; match indents with | Some ls -> doc_list_bol ls lexbuf | None -> doc_bol lexbuf } | "[[" nl { if !Cdglobals.plain_comments then (Output.char '['; Output.char '['; doc indents lexbuf) else (formatted := true; Output.start_inline_coq_block (); let eol = body_bol lexbuf in Output.end_inline_coq_block (); formatted := false; if eol then match indents with | Some ls -> doc_list_bol ls lexbuf | None -> doc_bol lexbuf else doc indents lexbuf)} | "[[[" nl { inf_rules indents lexbuf } | "[]" { Output.proofbox (); doc indents lexbuf } | "{{" { url lexbuf; doc indents lexbuf } | "[" { if !Cdglobals.plain_comments then Output.char '[' else (brackets := 1; Output.start_inline_coq (); escaped_coq lexbuf; Output.end_inline_coq ()); doc indents lexbuf } | "(*" { backtrack lexbuf ; let bol_parse = match indents with | Some is -> doc_list_bol is | None -> doc_bol in let eol = if !Cdglobals.parse_comments then comment lexbuf else skipped_comment lexbuf in if eol then bol_parse lexbuf else doc indents lexbuf } | '*'* "*)" space_nl* "(**" {(match indents with | Some _ -> Output.stop_item () | None -> ()); (* this says - if there is a blank line between the two comments, insert one in the output too *) let lines = List.length (Str.split_delim (Str.regexp "['\n']") (lexeme lexbuf)) in if lines > 2 then Output.paragraph (); doc_bol lexbuf } | '*'* "*)" space* nl { true } | '*'* "*)" { false } | "$" { if !Cdglobals.plain_comments then Output.char '$' else (Output.start_latex_math (); escaped_math_latex lexbuf); doc indents lexbuf } | "$$" { if !Cdglobals.plain_comments then Output.char '$'; Output.char '$'; doc indents lexbuf } | "%" { if !Cdglobals.plain_comments then Output.char '%' else escaped_latex lexbuf; doc indents lexbuf } | "%%" { if !Cdglobals.plain_comments then Output.char '%'; Output.char '%'; doc indents lexbuf } | "#" { if !Cdglobals.plain_comments then Output.char '#' else escaped_html lexbuf; doc indents lexbuf } | "##" { if !Cdglobals.plain_comments then Output.char '#'; Output.char '#'; doc indents lexbuf } | nonidentchar '_' nonidentchar { List.iter (fun x -> Output.char (lexeme_char lexbuf x)) [0;1;2]; doc indents lexbuf} | nonidentchar '_' { Output.char (lexeme_char lexbuf 0); if !Cdglobals.plain_comments then Output.char '_' else start_emph () ; doc indents lexbuf } | '_' nonidentchar { if !Cdglobals.plain_comments then Output.char '_' else stop_emph () ; Output.char (lexeme_char lexbuf 1); doc indents lexbuf } | "<<" space* { Output.start_verbatim true; verbatim 0 true lexbuf; doc_bol lexbuf } | '"' { if !Cdglobals.plain_comments then Output.char '"' else if in_quote () then stop_quote () else start_quote (); doc indents lexbuf } | eof { false } | _ { Output.char (lexeme_char lexbuf 0); doc indents lexbuf } (*s Various escapings *) and escaped_math_latex = parse | "$" { Output.stop_latex_math () } | eof { Output.stop_latex_math () } | "*)" { Output.stop_latex_math (); backtrack lexbuf } | _ { Output.latex_char (lexeme_char lexbuf 0); escaped_math_latex lexbuf } and escaped_latex = parse | "%" { () } | eof { () } | "*)" { backtrack lexbuf } | _ { Output.latex_char (lexeme_char lexbuf 0); escaped_latex lexbuf } and escaped_html = parse | "#" { () } | "&#" { Output.html_char '&'; Output.html_char '#'; escaped_html lexbuf } | "##" { Output.html_char '#'; escaped_html lexbuf } | eof { () } | "*)" { backtrack lexbuf } | _ { Output.html_char (lexeme_char lexbuf 0); escaped_html lexbuf } and verbatim depth inline = parse | nl ">>" space* nl { Output.verbatim_char inline '\n'; Output.stop_verbatim inline } | nl ">>" { Output.verbatim_char inline '\n'; Output.stop_verbatim inline } | ">>" { Output.stop_verbatim inline } | "(*" { Output.verbatim_char inline '('; Output.verbatim_char inline '*'; verbatim (depth+1) inline lexbuf } | "*)" { if (depth == 0) then (Output.stop_verbatim inline; backtrack lexbuf) else (Output.verbatim_char inline '*'; Output.verbatim_char inline ')'; verbatim (depth-1) inline lexbuf) } | eof { Output.stop_verbatim inline } | _ { Output.verbatim_char inline (lexeme_char lexbuf 0); verbatim depth inline lexbuf } and url = parse | "}}" { Output.url (Buffer.contents url_buffer) None; Buffer.clear url_buffer } | "}" { url_name lexbuf } | _ { Buffer.add_char url_buffer (lexeme_char lexbuf 0); url lexbuf } and url_name = parse | "}" { Output.url (Buffer.contents url_buffer) (Some (Buffer.contents url_name_buffer)); Buffer.clear url_buffer; Buffer.clear url_name_buffer } | _ { Buffer.add_char url_name_buffer (lexeme_char lexbuf 0); url_name lexbuf } (*s Coq, inside quotations *) and escaped_coq = parse | "]" { decr brackets; if !brackets > 0 then (Output.sublexer_in_doc ']'; escaped_coq lexbuf) else Tokens.flush_sublexer () } | "[" { incr brackets; Output.sublexer_in_doc '['; escaped_coq lexbuf } | "(*" { Tokens.flush_sublexer (); comment_level := 1; ignore (if !Cdglobals.parse_comments then comment lexbuf else skipped_comment lexbuf); escaped_coq lexbuf } | "*)" { (* likely to be a syntax error: we escape *) backtrack lexbuf } | eof { Tokens.flush_sublexer () } | (identifier '.')* identifier { Tokens.flush_sublexer(); Output.ident (lexeme lexbuf) None; escaped_coq lexbuf } | space_nl* { let str = lexeme lexbuf in Tokens.flush_sublexer(); (if !Cdglobals.inline_notmono then () else Output.end_inline_coq ()); String.iter Output.char str; (if !Cdglobals.inline_notmono then () else Output.start_inline_coq ()); escaped_coq lexbuf } | _ { Output.sublexer_in_doc (lexeme_char lexbuf 0); escaped_coq lexbuf } (*s Coq "Comments" command. *) and comments = parse | space_nl+ { Output.char ' '; comments lexbuf } | '"' [^ '"']* '"' { let s = lexeme lexbuf in let s = String.sub s 1 (String.length s - 2) in ignore (doc None (from_string s)); comments lexbuf } | ([^ '.' '"'] | '.' [^ ' ' '\t' '\n'])+ { escaped_coq (from_string (lexeme lexbuf)); comments lexbuf } | "." (space_nl | eof) { () } | eof { () } | _ { Output.char (lexeme_char lexbuf 0); comments lexbuf } and skipped_comment = parse | "(*" { incr comment_level; skipped_comment lexbuf } | "*)" space* nl { decr comment_level; if !comment_level > 0 then skipped_comment lexbuf else true } | "*)" { decr comment_level; if !comment_level > 0 then skipped_comment lexbuf else false } | eof { false } | _ { skipped_comment lexbuf } and comment = parse | "(*" { incr comment_level; Output.start_comment (); comment lexbuf } | "*)" space* nl { Output.end_comment (); Output.line_break (); decr comment_level; if !comment_level > 0 then comment lexbuf else true } | "*)" { Output.end_comment (); decr comment_level; if !comment_level > 0 then comment lexbuf else false } | "[" { if !Cdglobals.plain_comments then Output.char '[' else (brackets := 1; Output.start_inline_coq (); escaped_coq lexbuf; Output.end_inline_coq ()); comment lexbuf } | "[[" nl { if !Cdglobals.plain_comments then (Output.char '['; Output.char '[') else (formatted := true; Output.start_inline_coq_block (); let _ = body_bol lexbuf in Output.end_inline_coq_block (); formatted := false); comment lexbuf } | "$" { if !Cdglobals.plain_comments then Output.char '$' else (Output.start_latex_math (); escaped_math_latex lexbuf); comment lexbuf } | "$$" { if !Cdglobals.plain_comments then Output.char '$'; Output.char '$'; comment lexbuf } | "%" { if !Cdglobals.plain_comments then Output.char '%' else escaped_latex lexbuf; comment lexbuf } | "%%" { if !Cdglobals.plain_comments then Output.char '%'; Output.char '%'; comment lexbuf } | "#" { if !Cdglobals.plain_comments then Output.char '#' else escaped_html lexbuf; comment lexbuf } | "##" { if !Cdglobals.plain_comments then Output.char '#'; Output.char '#'; comment lexbuf } | eof { false } | space+ { Output.indentation (fst (count_spaces (lexeme lexbuf))); comment lexbuf } | nl { Output.line_break (); comment lexbuf } | _ { Output.char (lexeme_char lexbuf 0); comment lexbuf } and skip_to_dot = parse | '.' space* nl { true } | eof | '.' space+ { false } | "(*" { comment_level := 1; ignore (skipped_comment lexbuf); skip_to_dot lexbuf } | _ { skip_to_dot lexbuf } and skip_to_dot_or_brace = parse | '.' space* nl { true } | eof | '.' space+ { false } | "(*" { comment_level := 1; ignore (skipped_comment lexbuf); skip_to_dot_or_brace lexbuf } | "}" space* nl { true } | "}" { false } | space* { skip_to_dot_or_brace lexbuf } | _ { skip_to_dot lexbuf } and body_bol = parse | space+ { Output.indentation (fst (count_spaces (lexeme lexbuf))); body lexbuf } | _ { backtrack lexbuf; Output.indentation 0; body lexbuf } and body = parse | nl {Tokens.flush_sublexer(); Output.line_break(); Lexing.new_line lexbuf; body_bol lexbuf} | nl+ space* "]]" space* nl { Tokens.flush_sublexer(); if not !formatted then begin let s = lexeme lexbuf in let nlsp,s = remove_newline s in let _,isp = count_spaces s in let loc = lexeme_start lexbuf + nlsp + isp in Output.sublexer ']' loc; Output.sublexer ']' (loc+1); Tokens.flush_sublexer(); body lexbuf end else begin Output.paragraph (); true end } | "]]" space* nl { Tokens.flush_sublexer(); if not !formatted then begin let loc = lexeme_start lexbuf in Output.sublexer ']' loc; Output.sublexer ']' (loc+1); Tokens.flush_sublexer(); Output.line_break(); body lexbuf end else begin Output.paragraph (); true end } | eof { Tokens.flush_sublexer(); false } | '.' space* nl | '.' space* eof { Tokens.flush_sublexer(); Output.char '.'; Output.line_break(); if not !formatted then true else body_bol lexbuf } | '.' space* nl "]]" space* nl { Tokens.flush_sublexer(); Output.char '.'; if not !formatted then begin eprintf "Error: stray ]] at %d\n" (lexeme_start lexbuf); flush stderr; exit 1 end else begin Output.paragraph (); true end } | '.' space+ { Tokens.flush_sublexer(); Output.char '.'; Output.char ' '; if not !formatted then false else body lexbuf } | "(**" space_nl { Tokens.flush_sublexer(); Output.end_coq (); Output.start_doc (); let eol = doc_bol lexbuf in Output.end_doc (); Output.start_coq (); if eol then body_bol lexbuf else body lexbuf } | "(*" { Tokens.flush_sublexer(); comment_level := 1; let eol = if parse_comments () then begin Output.start_comment (); comment lexbuf end else begin let eol = skipped_comment lexbuf in if eol then Output.line_break(); eol end in if eol then body_bol lexbuf else body lexbuf } | "where" { Tokens.flush_sublexer(); Output.ident (lexeme lexbuf) None; start_notation_string lexbuf } | identifier { Tokens.flush_sublexer(); Output.ident (lexeme lexbuf) (Some (lexeme_start lexbuf)); body lexbuf } | ".." { Tokens.flush_sublexer(); Output.char '.'; Output.char '.'; body lexbuf } | '"' { Tokens.flush_sublexer(); Output.char '"'; string lexbuf; body lexbuf } | space { Tokens.flush_sublexer(); Output.char (lexeme_char lexbuf 0); body lexbuf } | _ { let c = lexeme_char lexbuf 0 in Output.sublexer c (lexeme_start lexbuf); body lexbuf } and start_notation_string = parse | space { Tokens.flush_sublexer(); Output.char (lexeme_char lexbuf 0); start_notation_string lexbuf } | '"' (* a true notation *) { Output.sublexer '"' (lexeme_start lexbuf); notation_string lexbuf; body lexbuf } | _ (* an abbreviation *) { backtrack lexbuf; body lexbuf } and notation_string = parse | "\"\"" { Output.char '"'; Output.char '"'; (* Unlikely! *) notation_string lexbuf } | '"' { Tokens.flush_sublexer(); Output.char '"' } | _ { let c = lexeme_char lexbuf 0 in Output.sublexer c (lexeme_start lexbuf); notation_string lexbuf } and string = parse | "\"\"" { Output.char '"'; Output.char '"'; string lexbuf } | '"' { Output.char '"' } | _ { let c = lexeme_char lexbuf 0 in Output.char c; string lexbuf } and skip_hide = parse | eof | end_hide { () } | _ { skip_hide lexbuf } (*s Reading token pretty-print *) and printing_token_body = parse | "*)" nl? | eof { let s = Buffer.contents token_buffer in Buffer.clear token_buffer; s } | _ { Buffer.add_string token_buffer (lexeme lexbuf); printing_token_body lexbuf } (*s These handle inference rules, parsing the body segments of things enclosed in [[[ ]]] brackets *) and inf_rules indents = parse | space* nl (* blank line, before or between definitions *) { inf_rules indents lexbuf } | "]]]" nl (* end of the inference rules block *) { match indents with | Some ls -> doc_list_bol ls lexbuf | None -> doc_bol lexbuf } | _ { backtrack lexbuf; (* anything else must be the first line in a rule *) inf_rules_assumptions indents [] lexbuf} (* The inference rule parsing just collects the inference rule and then calls the output function once, instead of doing things incrementally like the rest of the lexer. If only there were a real parsing phase... *) and inf_rules_assumptions indents assumptions = parse | space* "---" '-'* [^ '\n']* nl (* hit the horizontal line *) { let line = lexeme lexbuf in let (spaces,_) = count_spaces line in let dashes_and_name = cut_head_tail_spaces (String.sub line 0 (String.length line - 1)) in let ldn = String.length dashes_and_name in let (dashes,name) = try (let i = String.index dashes_and_name ' ' in let d = String.sub dashes_and_name 0 i in let n = cut_head_tail_spaces (String.sub dashes_and_name (i+1) (ldn-i-1)) in (d, Some n)) with _ -> (dashes_and_name, None) in inf_rules_conclusion indents (List.rev assumptions) (spaces, dashes, name) [] lexbuf } | [^ '\n']* nl (* if it's not the horizontal line, it's an assumption *) { let line = lexeme lexbuf in let (spaces,_) = count_spaces line in let assumption = cut_head_tail_spaces (String.sub line 0 (String.length line - 1)) in inf_rules_assumptions indents ((spaces,assumption)::assumptions) lexbuf } (*s The conclusion is required to come immediately after the horizontal bar. It is allowed to contain multiple lines of text, like the assumptions. The conclusion ends when we spot a blank line or a ']]]'. *) and inf_rules_conclusion indents assumptions middle conclusions = parse | space* nl | space* "]]]" nl (* end of conclusions. *) { backtrack lexbuf; Output.inf_rule assumptions middle (List.rev conclusions); inf_rules indents lexbuf } | space* [^ '\n']+ nl (* this is a line in the conclusion *) { let line = lexeme lexbuf in let (spaces,_) = count_spaces line in let conc = cut_head_tail_spaces (String.sub line 0 (String.length line - 1)) in inf_rules_conclusion indents assumptions middle ((spaces,conc) :: conclusions) lexbuf } (*s A small scanner to support the chapter subtitle feature *) and st_start m = parse | "(*" "*"+ space+ "*" space+ { st_modname m lexbuf } | _ { None } and st_modname m = parse | identifier space* ":" space* { if subtitle m (lexeme lexbuf) then st_subtitle lexbuf else None } | _ { None } and st_subtitle = parse | [^ '\n']* '\n' { let st = lexeme lexbuf in let i = try Str.search_forward (Str.regexp "\\**)") st 0 with Not_found -> (eprintf "unterminated comment at beginning of file\n"; exit 1) in Some (cut_head_tail_spaces (String.sub st 0 i)) } | _ { None } (*s Applying the scanners to files *) { let coq_file f m = reset (); let c = open_in f in let lb = from_channel c in (Index.current_library := m; Output.initialize (); Output.start_module (); Output.start_coq (); coq_bol lb; Output.end_coq (); close_in c) let detect_subtitle f m = let c = open_in f in let lb = from_channel c in let sub = st_start m lb in close_in c; sub }