(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (Zne (Zplus x (Zopp y)) ZERO). Proof. Intros x y; Unfold Zne; Unfold not; Intros H1 H2; Apply H1; Apply Zsimpl_plus_l with (Zopp y); Rewrite Zplus_inverse_l; Rewrite Zplus_sym; Trivial with arith. Qed. Theorem Zegal_left : (x,y:Z) (x=y) -> (Zplus x (Zopp y)) = ZERO. Proof. Intros x y H; Apply (Zsimpl_plus_l y);Rewrite -> Zplus_permute; Rewrite -> Zplus_inverse_r;Do 2 Rewrite -> Zero_right;Assumption. Qed. Theorem Zle_left : (x,y:Z) (Zle x y) -> (Zle ZERO (Zplus y (Zopp x))). Proof. Intros x y H; Replace ZERO with (Zplus x (Zopp x)). Apply Zle_reg_r; Trivial. Apply Zplus_inverse_r. Qed. Theorem Zle_left_rev : (x,y:Z) (Zle ZERO (Zplus y (Zopp x))) -> (Zle x y). Proof. Intros x y H; Apply Zsimpl_le_plus_r with (Zopp x). Rewrite Zplus_inverse_r; Trivial. Qed. Theorem Zlt_left_rev : (x,y:Z) (Zlt ZERO (Zplus y (Zopp x))) -> (Zlt x y). Proof. Intros x y H; Apply Zsimpl_lt_plus_r with (Zopp x). Rewrite Zplus_inverse_r; Trivial. Qed. Theorem Zlt_left : (x,y:Z) (Zlt x y) -> (Zle ZERO (Zplus (Zplus y (NEG xH)) (Zopp x))). Proof. Intros x y H; Apply Zle_left; Apply Zle_S_n; Change (Zle (Zs x) (Zs (Zpred y))); Rewrite <- Zs_pred; Apply Zlt_le_S; Assumption. Qed. Theorem Zlt_left_lt : (x,y:Z) (Zlt x y) -> (Zlt ZERO (Zplus y (Zopp x))). Proof. Intros x y H; Replace ZERO with (Zplus x (Zopp x)). Apply Zlt_reg_r; Trivial. Apply Zplus_inverse_r. Qed. Theorem Zge_left : (x,y:Z) (Zge x y) -> (Zle ZERO (Zplus x (Zopp y))). Proof. Intros x y H; Apply Zle_left; Apply Zge_le; Assumption. Qed. Theorem Zgt_left : (x,y:Z) (Zgt x y) -> (Zle ZERO (Zplus (Zplus x (NEG xH)) (Zopp y))). Proof. Intros x y H; Apply Zlt_left; Apply Zgt_lt; Assumption. Qed. Theorem Zgt_left_gt : (x,y:Z) (Zgt x y) -> (Zgt (Zplus x (Zopp y)) ZERO). Proof. Intros x y H; Replace ZERO with (Zplus y (Zopp y)). Apply Zgt_reg_r; Trivial. Apply Zplus_inverse_r. Qed. Theorem Zgt_left_rev : (x,y:Z) (Zgt (Zplus x (Zopp y)) ZERO) -> (Zgt x y). Proof. Intros x y H; Apply Zsimpl_gt_plus_r with (Zopp y). Rewrite Zplus_inverse_r; Trivial. Qed. (**********************************************************************) (** Factorization lemmas *) Theorem Zred_factor0 : (x:Z) x = (Zmult x (POS xH)). Intro x; Rewrite (Zmult_n_1 x); Reflexivity. Qed. Theorem Zred_factor1 : (x:Z) (Zplus x x) = (Zmult x (POS (xO xH))). Proof. Exact Zplus_Zmult_2. Qed. Theorem Zred_factor2 : (x,y:Z) (Zplus x (Zmult x y)) = (Zmult x (Zplus (POS xH) y)). Intros x y; Pattern 1 x ; Rewrite <- (Zmult_n_1 x); Rewrite <- Zmult_plus_distr_r; Trivial with arith. Qed. Theorem Zred_factor3 : (x,y:Z) (Zplus (Zmult x y) x) = (Zmult x (Zplus (POS xH) y)). Intros x y; Pattern 2 x ; Rewrite <- (Zmult_n_1 x); Rewrite <- Zmult_plus_distr_r; Rewrite Zplus_sym; Trivial with arith. Qed. Theorem Zred_factor4 : (x,y,z:Z) (Zplus (Zmult x y) (Zmult x z)) = (Zmult x (Zplus y z)). Intros x y z; Symmetry; Apply Zmult_plus_distr_r. Qed. Theorem Zred_factor5 : (x,y:Z) (Zplus (Zmult x ZERO) y) = y. Intros x y; Rewrite <- Zmult_n_O;Auto with arith. Qed. Theorem Zred_factor6 : (x:Z) x = (Zplus x ZERO). Intro; Rewrite Zero_right; Trivial with arith. Qed. Theorem Zle_mult_approx: (x,y,z:Z) (Zgt x ZERO) -> (Zgt z ZERO) -> (Zle ZERO y) -> (Zle ZERO (Zplus (Zmult y x) z)). Intros x y z H1 H2 H3; Apply Zle_trans with m:=(Zmult y x) ; [ Apply Zle_mult; Assumption | Pattern 1 (Zmult y x) ; Rewrite <- Zero_right; Apply Zle_reg_l; Apply Zlt_le_weak; Apply Zgt_lt; Assumption]. Qed. Theorem Zmult_le_approx: (x,y,z:Z) (Zgt x ZERO) -> (Zgt x z) -> (Zle ZERO (Zplus (Zmult y x) z)) -> (Zle ZERO y). Intros x y z H1 H2 H3; Apply Zlt_n_Sm_le; Apply Zmult_lt with x; [ Assumption | Apply Zle_lt_trans with 1:=H3 ; Rewrite <- Zmult_Sm_n; Apply Zlt_reg_l; Apply Zgt_lt; Assumption]. Qed. V7only [ (* Compatibility *) Require Znat. Require Zcompare. Notation neq := neq. Notation Zne := Zne. Notation OMEGA2 := Zle_0_plus. Notation add_un_Zs := add_un_Zs. Notation inj_S := inj_S. Notation Zplus_S_n := Zplus_S_n. Notation inj_plus := inj_plus. Notation inj_mult := inj_mult. Notation inj_neq := inj_neq. Notation inj_le := inj_le. Notation inj_lt := inj_lt. Notation inj_gt := inj_gt. Notation inj_ge := inj_ge. Notation inj_eq := inj_eq. Notation intro_Z := intro_Z. Notation inj_minus1 := inj_minus1. Notation inj_minus2 := inj_minus2. Notation dec_eq := dec_eq. Notation dec_Zne := dec_Zne. Notation dec_Zle := dec_Zle. Notation dec_Zgt := dec_Zgt. Notation dec_Zge := dec_Zge. Notation dec_Zlt := dec_Zlt. Notation dec_eq_nat := dec_eq_nat. Notation not_Zge := not_Zge. Notation not_Zlt := not_Zlt. Notation not_Zle := not_Zle. Notation not_Zgt := not_Zgt. Notation not_Zeq := not_Zeq. Notation Zopp_one := Zopp_one. Notation Zopp_Zmult_r := Zopp_Zmult_r. Notation Zmult_Zopp_left := Zmult_Zopp_left. Notation Zopp_Zmult_l := Zopp_Zmult_l. Notation Zcompare_Zplus_compatible2 := Zcompare_Zplus_compatible2. Notation Zcompare_Zmult_compatible := Zcompare_Zmult_compatible. Notation Zmult_eq := Zmult_eq. Notation Z_eq_mult := Z_eq_mult. Notation Zmult_le := Zmult_le. Notation Zle_ZERO_mult := Zle_ZERO_mult. Notation Zgt_ZERO_mult := Zgt_ZERO_mult. Notation Zle_mult := Zle_mult. Notation Zmult_lt := Zmult_lt. Notation Zmult_gt := Zmult_gt. Notation Zle_Zmult_pos_right := Zle_Zmult_pos_right. Notation Zle_Zmult_pos_left := Zle_Zmult_pos_left. Notation Zge_Zmult_pos_right := Zge_Zmult_pos_right. Notation Zge_Zmult_pos_left := Zge_Zmult_pos_left. Notation Zge_Zmult_pos_compat := Zge_Zmult_pos_compat. Notation Zle_mult_simpl := Zle_mult_simpl. Notation Zge_mult_simpl := Zge_mult_simpl. Notation Zgt_mult_simpl := Zgt_mult_simpl. Notation Zgt_square_simpl := Zgt_square_simpl. ].