(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* false | _ => true end. Definition Zge_bool := [x,y:Z]Cases `x ?= y` of INFERIEUR => false | _ => true end. Definition Zlt_bool := [x,y:Z]Cases `x ?= y` of INFERIEUR => true | _ => false end. Definition Zgt_bool := [x,y:Z]Cases ` x ?= y` of SUPERIEUR => true | _ => false end. Definition Zeq_bool := [x,y:Z]Cases `x ?= y` of EGAL => true | _ => false end. Definition Zneq_bool := [x,y:Z]Cases `x ?= y` of EGAL => false | _ => true end. Lemma Zle_cases : (x,y:Z)if (Zle_bool x y) then `x<=y` else `x>y`. Proof. Intros x y; Unfold Zle_bool Zle Zgt. Case (Zcompare x y); Auto; Discriminate. Qed. Lemma Zlt_cases : (x,y:Z)if (Zlt_bool x y) then `x=y`. Proof. Intros x y; Unfold Zlt_bool Zlt Zge. Case (Zcompare x y); Auto; Discriminate. Qed. Lemma Zge_cases : (x,y:Z)if (Zge_bool x y) then `x>=y` else `xy` else `x<=y`. Proof. Intros x y; Unfold Zgt_bool Zgt Zle. Case (Zcompare x y); Auto; Discriminate. Qed. (** Lemmas on [Zle_bool] used in contrib/graphs *) Lemma Zle_bool_imp_le : (x,y:Z) (Zle_bool x y)=true -> (Zle x y). Proof. Unfold Zle_bool Zle. Intros x y. Unfold not. Case (Zcompare x y); Intros; Discriminate. Qed. Lemma Zle_imp_le_bool : (x,y:Z) (Zle x y) -> (Zle_bool x y)=true. Proof. Unfold Zle Zle_bool. Intros x y. Case (Zcompare x y); Trivial. Intro. Elim (H (refl_equal ? ?)). Qed. Lemma Zle_bool_refl : (x:Z) (Zle_bool x x)=true. Proof. Intro. Apply Zle_imp_le_bool. Apply Zle_refl. Reflexivity. Qed. Lemma Zle_bool_antisym : (x,y:Z) (Zle_bool x y)=true -> (Zle_bool y x)=true -> x=y. Proof. Intros. Apply Zle_antisym. Apply Zle_bool_imp_le. Assumption. Apply Zle_bool_imp_le. Assumption. Qed. Lemma Zle_bool_trans : (x,y,z:Z) (Zle_bool x y)=true -> (Zle_bool y z)=true -> (Zle_bool x z)=true. Proof. Intros x y z; Intros. Apply Zle_imp_le_bool. Apply Zle_trans with m:=y. Apply Zle_bool_imp_le. Assumption. Apply Zle_bool_imp_le. Assumption. Qed. Definition Zle_bool_total : (x,y:Z) {(Zle_bool x y)=true}+{(Zle_bool y x)=true}. Proof. Intros x y; Intros. Unfold Zle_bool. Cut (Zcompare x y)=SUPERIEUR<->(Zcompare y x)=INFERIEUR. Case (Zcompare x y). Left . Reflexivity. Left . Reflexivity. Right . Rewrite (proj1 ? ? H (refl_equal ? ?)). Reflexivity. Apply Zcompare_ANTISYM. Defined. Lemma Zle_bool_plus_mono : (x,y,z,t:Z) (Zle_bool x y)=true -> (Zle_bool z t)=true -> (Zle_bool (Zplus x z) (Zplus y t))=true. Proof. Intros. Apply Zle_imp_le_bool. Apply Zle_plus_plus. Apply Zle_bool_imp_le. Assumption. Apply Zle_bool_imp_le. Assumption. Qed. Lemma Zone_pos : (Zle_bool `1` `0`)=false. Proof. Reflexivity. Qed. Lemma Zone_min_pos : (x:Z) (Zle_bool x `0`)=false -> (Zle_bool `1` x)=true. Proof. Intros x; Intros. Apply Zle_imp_le_bool. Change (Zle (Zs ZERO) x). Apply Zgt_le_S. Generalize H. Unfold Zle_bool Zgt. Case (Zcompare x ZERO). Intro H0. Discriminate H0. Intro H0. Discriminate H0. Reflexivity. Qed. Lemma Zle_is_le_bool : (x,y:Z) (Zle x y) <-> (Zle_bool x y)=true. Proof. Intros. Split. Intro. Apply Zle_imp_le_bool. Assumption. Intro. Apply Zle_bool_imp_le. Assumption. Qed. Lemma Zge_is_le_bool : (x,y:Z) (Zge x y) <-> (Zle_bool y x)=true. Proof. Intros. Split. Intro. Apply Zle_imp_le_bool. Apply Zge_le. Assumption. Intro. Apply Zle_ge. Apply Zle_bool_imp_le. Assumption. Qed. Lemma Zlt_is_le_bool : (x,y:Z) (Zlt x y) <-> (Zle_bool x `y-1`)=true. Proof. Intros x y. Split. Intro. Apply Zle_imp_le_bool. Apply Zlt_n_Sm_le. Rewrite (Zs_pred y) in H. Assumption. Intro. Rewrite (Zs_pred y). Apply Zle_lt_n_Sm. Apply Zle_bool_imp_le. Assumption. Qed. Lemma Zgt_is_le_bool : (x,y:Z) (Zgt x y) <-> (Zle_bool y `x-1`)=true. Proof. Intros x y. Apply iff_trans with `y < x`. Split. Exact (Zgt_lt x y). Exact (Zlt_gt y x). Exact (Zlt_is_le_bool y x). Qed.