(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (coherent U R x y). Proof. Intros U R x y H'; Red. Exists y; Auto with sets. Qed. Hints Resolve Rstar_imp_coherent. Theorem coherent_symmetric : (U: Type) (R: (Relation U)) (Symmetric U (coherent U R)). Proof. Unfold 1 coherent. Intros U R; Red. Intros x y H'; Elim H'. Intros z H'0; Exists z; Tauto. Qed. Theorem Strong_confluence : (U: Type) (R: (Relation U)) (Strongly_confluent U R) -> (Confluent U R). Proof. Intros U R H'; Red. Intro x; Red; Intros a b H'0. Unfold 1 coherent. Generalize b; Clear b. Elim H'0; Clear H'0. Intros x0 b H'1; Exists b; Auto with sets. Intros x0 y z H'1 H'2 H'3 b H'4. Generalize (Lemma1 U R); Intro h; LApply h; [Intro H'0; Generalize (H'0 x0 b); Intro h0; LApply h0; [Intro H'5; Generalize (H'5 y); Intro h1; LApply h1; [Intro h2; Elim h2; Intros z0 h3; Elim h3; Intros H'6 H'7; Clear h h0 h1 h2 h3 | Clear h h0 h1] | Clear h h0] | Clear h]; Auto with sets. Generalize (H'3 z0); Intro h; LApply h; [Intro h0; Elim h0; Intros z1 h1; Elim h1; Intros H'8 H'9; Clear h h0 h1 | Clear h]; Auto with sets. Exists z1; Split; Auto with sets. Apply Rstar_n with z0; Auto with sets. Qed. Theorem Strong_confluence_direct : (U: Type) (R: (Relation U)) (Strongly_confluent U R) -> (Confluent U R). Proof. Intros U R H'; Red. Intro x; Red; Intros a b H'0. Unfold 1 coherent. Generalize b; Clear b. Elim H'0; Clear H'0. Intros x0 b H'1; Exists b; Auto with sets. Intros x0 y z H'1 H'2 H'3 b H'4. Cut (exT U [t: U] (Rstar U R y t) /\ (R b t)). Intro h; Elim h; Intros t h0; Elim h0; Intros H'0 H'5; Clear h h0. Generalize (H'3 t); Intro h; LApply h; [Intro h0; Elim h0; Intros z0 h1; Elim h1; Intros H'6 H'7; Clear h h0 h1 | Clear h]; Auto with sets. Exists z0; Split; [Assumption | Idtac]. Apply Rstar_n with t; Auto with sets. Generalize H'1; Generalize y; Clear H'1. Elim H'4. Intros x1 y0 H'0; Exists y0; Auto with sets. Intros x1 y0 z0 H'0 H'1 H'5 y1 H'6. Red in H'. Generalize (H' x1 y0 y1); Intro h; LApply h; [Intro H'7; LApply H'7; [Intro h0; Elim h0; Intros z1 h1; Elim h1; Intros H'8 H'9; Clear h H'7 h0 h1 | Clear h] | Clear h]; Auto with sets. Generalize (H'5 z1); Intro h; LApply h; [Intro h0; Elim h0; Intros t h1; Elim h1; Intros H'7 H'10; Clear h h0 h1 | Clear h]; Auto with sets. Exists t; Split; Auto with sets. Apply Rstar_n with z1; Auto with sets. Qed. Theorem Noetherian_contains_Noetherian : (U: Type) (R, R': (Relation U)) (Noetherian U R) -> (contains U R R') -> (Noetherian U R'). Proof. Unfold 2 Noetherian. Intros U R R' H' H'0 x. Elim (H' x); Auto with sets. Qed. Theorem Newman : (U: Type) (R: (Relation U)) (Noetherian U R) -> (Locally_confluent U R) -> (Confluent U R). Proof. Intros U R H' H'0; Red; Intro x. Elim (H' x); Unfold confluent. Intros x0 H'1 H'2 y z H'3 H'4. Generalize (Rstar_cases U R x0 y); Intro h; LApply h; [Intro h0; Elim h0; [Clear h h0; Intro h1 | Intro h1; Elim h1; Intros u h2; Elim h2; Intros H'5 H'6; Clear h h0 h1 h2] | Clear h]; Auto with sets. Elim h1; Auto with sets. Generalize (Rstar_cases U R x0 z); Intro h; LApply h; [Intro h0; Elim h0; [Clear h h0; Intro h1 | Intro h1; Elim h1; Intros v h2; Elim h2; Intros H'7 H'8; Clear h h0 h1 h2] | Clear h]; Auto with sets. Elim h1; Generalize coherent_symmetric; Intro t; Red in t; Auto with sets. Unfold Locally_confluent locally_confluent coherent in H'0. Generalize (H'0 x0 u v); Intro h; LApply h; [Intro H'9; LApply H'9; [Intro h0; Elim h0; Intros t h1; Elim h1; Intros H'10 H'11; Clear h H'9 h0 h1 | Clear h] | Clear h]; Auto with sets. Clear H'0. Unfold 1 coherent in H'2. Generalize (H'2 u); Intro h; LApply h; [Intro H'0; Generalize (H'0 y t); Intro h0; LApply h0; [Intro H'9; LApply H'9; [Intro h1; Elim h1; Intros y1 h2; Elim h2; Intros H'12 H'13; Clear h h0 H'9 h1 h2 | Clear h h0] | Clear h h0] | Clear h]; Auto with sets. Generalize Rstar_transitive; Intro T; Red in T. Generalize (H'2 v); Intro h; LApply h; [Intro H'9; Generalize (H'9 y1 z); Intro h0; LApply h0; [Intro H'14; LApply H'14; [Intro h1; Elim h1; Intros z1 h2; Elim h2; Intros H'15 H'16; Clear h h0 H'14 h1 h2 | Clear h h0] | Clear h h0] | Clear h]; Auto with sets. Red; (Exists z1; Split); Auto with sets. Apply T with y1; Auto with sets. Apply T with t; Auto with sets. Qed.