(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (EX n:nat |(cardinal U X n)). Proof. NewInduction 1 as [|A _ [n H]]. Exists O; Auto with sets. Exists (S n); Auto with sets. Qed. Lemma cardinal_finite: (X: (Ensemble U)) (n: nat) (cardinal U X n) -> (Finite U X). Proof. NewInduction 1; Auto with sets. Qed. Theorem Add_preserves_Finite: (X: (Ensemble U)) (x: U) (Finite U X) -> (Finite U (Add U X x)). Proof. Intros X x H'. Elim (classic (In U X x)); Intro H'0; Auto with sets. Rewrite (Non_disjoint_union U X x); Auto with sets. Qed. Hints Resolve Add_preserves_Finite. Theorem Singleton_is_finite: (x: U) (Finite U (Singleton U x)). Proof. Intro x; Rewrite <- (Empty_set_zero U (Singleton U x)). Change (Finite U (Add U (Empty_set U) x)); Auto with sets. Qed. Hints Resolve Singleton_is_finite. Theorem Union_preserves_Finite: (X, Y: (Ensemble U)) (Finite U X) -> (Finite U Y) -> (Finite U (Union U X Y)). Proof. Intros X Y H'; Elim H'. Rewrite (Empty_set_zero U Y); Auto with sets. Intros A H'0 H'1 x H'2 H'3. Rewrite (Union_commutative U (Add U A x) Y). Rewrite <- (Union_add U Y A x). Rewrite (Union_commutative U Y A); Auto with sets. Qed. Lemma Finite_downward_closed: (A: (Ensemble U)) (Finite U A) -> (X: (Ensemble U)) (Included U X A) -> (Finite U X). Proof. Intros A H'; Elim H'; Auto with sets. Intros X H'0. Rewrite (less_than_empty U X H'0); Auto with sets. Intros; Elim Included_Add with U X A0 x; Auto with sets. NewDestruct 1 as [A' [H5 H6]]. Rewrite H5; Auto with sets. Qed. Lemma Intersection_preserves_finite: (A: (Ensemble U)) (Finite U A) -> (X: (Ensemble U)) (Finite U (Intersection U X A)). Proof. Intros A H' X; Apply Finite_downward_closed with A; Auto with sets. Qed. Lemma cardinalO_empty: (X: (Ensemble U)) (cardinal U X O) -> X == (Empty_set U). Proof. Intros X H; Apply (cardinal_invert U X O); Trivial with sets. Qed. Hints Resolve cardinalO_empty. Lemma inh_card_gt_O: (X: (Ensemble U)) (Inhabited U X) -> (n: nat) (cardinal U X n) -> (gt n O). Proof. NewInduction 1 as [x H']. Intros n H'0. Elim (gt_O_eq n); Auto with sets. Intro H'1; Generalize H'; Generalize H'0. Rewrite <- H'1; Intro H'2. Rewrite (cardinalO_empty X); Auto with sets. Intro H'3; Elim H'3. Qed. Lemma card_soustr_1: (X: (Ensemble U)) (n: nat) (cardinal U X n) -> (x: U) (In U X x) -> (cardinal U (Subtract U X x) (pred n)). Proof. Intros X n H'; Elim H'. Intros x H'0; Elim H'0. Clear H' n X. Intros X n H' H'0 x H'1 x0 H'2. Elim (classic (In U X x0)). Intro H'4; Rewrite (add_soustr_xy U X x x0). Elim (classic x == x0). Intro H'5. Absurd (In U X x0); Auto with sets. Rewrite <- H'5; Auto with sets. Intro H'3; Try Assumption. Cut (S (pred n)) = (pred (S n)). Intro H'5; Rewrite <- H'5. Apply card_add; Auto with sets. Red; Intro H'6; Elim H'6. Intros H'7 H'8; Try Assumption. Elim H'1; Auto with sets. Unfold 2 pred; Symmetry. Apply S_pred with m := O. Change (gt n O). Apply inh_card_gt_O with X := X; Auto with sets. Apply Inhabited_intro with x := x0; Auto with sets. Red; Intro H'3. Apply H'1. Elim H'3; Auto with sets. Rewrite H'3; Auto with sets. Elim (classic x == x0). Intro H'3; Rewrite <- H'3. Cut (Subtract U (Add U X x) x) == X; Auto with sets. Intro H'4; Rewrite H'4; Auto with sets. Intros H'3 H'4; Try Assumption. Absurd (In U (Add U X x) x0); Auto with sets. Red; Intro H'5; Try Exact H'5. LApply (Add_inv U X x x0); Tauto. Qed. Lemma cardinal_is_functional: (X: (Ensemble U)) (c1: nat) (cardinal U X c1) -> (Y: (Ensemble U)) (c2: nat) (cardinal U Y c2) -> X == Y -> c1 = c2. Proof. Intros X c1 H'; Elim H'. Intros Y c2 H'0; Elim H'0; Auto with sets. Intros A n H'1 H'2 x H'3 H'5. Elim (not_Empty_Add U A x); Auto with sets. Clear H' c1 X. Intros X n H' H'0 x H'1 Y c2 H'2. Elim H'2. Intro H'3. Elim (not_Empty_Add U X x); Auto with sets. Clear H'2 c2 Y. Intros X0 c2 H'2 H'3 x0 H'4 H'5. Elim (classic (In U X0 x)). Intro H'6; Apply f_equal with nat. Apply H'0 with Y := (Subtract U (Add U X0 x0) x). ElimType (pred (S c2)) = c2; Auto with sets. Apply card_soustr_1; Auto with sets. Rewrite <- H'5. Apply Sub_Add_new; Auto with sets. Elim (classic x == x0). Intros H'6 H'7; Apply f_equal with nat. Apply H'0 with Y := X0; Auto with sets. Apply Simplify_add with x := x; Auto with sets. Pattern 2 x; Rewrite H'6; Auto with sets. Intros H'6 H'7. Absurd (Add U X x) == (Add U X0 x0); Auto with sets. Clear H'0 H' H'3 n H'5 H'4 H'2 H'1 c2. Red; Intro H'. LApply (Extension U (Add U X x) (Add U X0 x0)); Auto with sets. Clear H'. Intro H'; Red in H'. Elim H'; Intros H'0 H'1; Red in H'0; Clear H' H'1. Absurd (In U (Add U X0 x0) x); Auto with sets. LApply (Add_inv U X0 x0 x); [ Intuition | Apply (H'0 x); Apply Add_intro2 ]. Qed. Lemma cardinal_Empty : (m:nat)(cardinal U (Empty_set U) m) -> O = m. Proof. Intros m Cm; Generalize (cardinal_invert U (Empty_set U) m Cm). Elim m; Auto with sets. Intros; Elim H0; Intros; Elim H1; Intros; Elim H2; Intros. Elim (not_Empty_Add U x x0 H3). Qed. Lemma cardinal_unicity : (X: (Ensemble U)) (n: nat) (cardinal U X n) -> (m: nat) (cardinal U X m) -> n = m. Proof. Intros; Apply cardinal_is_functional with X X; Auto with sets. Qed. Lemma card_Add_gen: (A: (Ensemble U)) (x: U) (n, n': nat) (cardinal U A n) -> (cardinal U (Add U A x) n') -> (le n' (S n)). Proof. Intros A x n n' H'. Elim (classic (In U A x)). Intro H'0. Rewrite (Non_disjoint_union U A x H'0). Intro H'1; Cut n = n'. Intro E; Rewrite E; Auto with sets. Apply cardinal_unicity with A; Auto with sets. Intros H'0 H'1. Cut n'=(S n). Intro E; Rewrite E; Auto with sets. Apply cardinal_unicity with (Add U A x); Auto with sets. Qed. Lemma incl_st_card_lt: (X: (Ensemble U)) (c1: nat) (cardinal U X c1) -> (Y: (Ensemble U)) (c2: nat) (cardinal U Y c2) -> (Strict_Included U X Y) -> (gt c2 c1). Proof. Intros X c1 H'; Elim H'. Intros Y c2 H'0; Elim H'0; Auto with sets arith. Intro H'1. Elim (Strict_Included_strict U (Empty_set U)); Auto with sets arith. Clear H' c1 X. Intros X n H' H'0 x H'1 Y c2 H'2. Elim H'2. Intro H'3; Elim (not_SIncl_empty U (Add U X x)); Auto with sets arith. Clear H'2 c2 Y. Intros X0 c2 H'2 H'3 x0 H'4 H'5; Elim (classic (In U X0 x)). Intro H'6; Apply gt_n_S. Apply H'0 with Y := (Subtract U (Add U X0 x0) x). ElimType (pred (S c2)) = c2; Auto with sets arith. Apply card_soustr_1; Auto with sets arith. Apply incl_st_add_soustr; Auto with sets arith. Elim (classic x == x0). Intros H'6 H'7; Apply gt_n_S. Apply H'0 with Y := X0; Auto with sets arith. Apply sincl_add_x with x := x0. Rewrite <- H'6; Auto with sets arith. Pattern 1 x0; Rewrite <- H'6; Trivial with sets arith. Intros H'6 H'7; Red in H'5. Elim H'5; Intros H'8 H'9; Try Exact H'8; Clear H'5. Red in H'8. Generalize (H'8 x). Intro H'5; LApply H'5; Auto with sets arith. Intro H; Elim Add_inv with U X0 x0 x; Auto with sets arith. Intro; Absurd (In U X0 x); Auto with sets arith. Intro; Absurd x==x0; Auto with sets arith. Qed. Lemma incl_card_le: (X,Y: (Ensemble U)) (n,m: nat) (cardinal U X n) -> (cardinal U Y m) -> (Included U X Y) -> (le n m). Proof. Intros; Elim Included_Strict_Included with U X Y; Auto with sets arith; Intro. Cut (gt m n); Auto with sets arith. Apply incl_st_card_lt with X := X Y := Y; Auto with sets arith. Generalize H0; Rewrite <- H2; Intro. Cut n=m. Intro E; Rewrite E; Auto with sets arith. Apply cardinal_unicity with X; Auto with sets arith. Qed. Lemma G_aux: (P:(Ensemble U) ->Prop) ((X:(Ensemble U)) (Finite U X) -> ((Y:(Ensemble U)) (Strict_Included U Y X) ->(P Y)) ->(P X)) -> (P (Empty_set U)). Proof. Intros P H'; Try Assumption. Apply H'; Auto with sets. Clear H'; Auto with sets. Intros Y H'; Try Assumption. Red in H'. Elim H'; Intros H'0 H'1; Try Exact H'1; Clear H'. LApply (less_than_empty U Y); [Intro H'3; Try Exact H'3 | Assumption]. Elim H'1; Auto with sets. Qed. Hints Unfold not. Lemma Generalized_induction_on_finite_sets: (P:(Ensemble U) ->Prop) ((X:(Ensemble U)) (Finite U X) -> ((Y:(Ensemble U)) (Strict_Included U Y X) ->(P Y)) ->(P X)) -> (X:(Ensemble U)) (Finite U X) ->(P X). Proof. Intros P H'0 X H'1. Generalize P H'0; Clear H'0 P. Elim H'1. Intros P H'0. Apply G_aux; Auto with sets. Clear H'1 X. Intros A H' H'0 x H'1 P H'3. Cut (Y:(Ensemble U)) (Included U Y (Add U A x)) ->(P Y); Auto with sets. Generalize H'1. Apply H'0. Intros X K H'5 L Y H'6; Apply H'3; Auto with sets. Apply Finite_downward_closed with A := (Add U X x); Auto with sets. Intros Y0 H'7. Elim (Strict_inclusion_is_transitive_with_inclusion U Y0 Y (Add U X x)); Auto with sets. Intros H'2 H'4. Elim (Included_Add U Y0 X x); [Intro H'14 | Intro H'14; Elim H'14; Intros A' E; Elim E; Intros H'15 H'16; Clear E H'14 | Idtac]; Auto with sets. Elim (Included_Strict_Included U Y0 X); Auto with sets. Intro H'9; Apply H'5 with Y := Y0; Auto with sets. Intro H'9; Rewrite H'9. Apply H'3; Auto with sets. Intros Y1 H'8; Elim H'8. Intros H'10 H'11; Apply H'5 with Y := Y1; Auto with sets. Elim (Included_Strict_Included U A' X); Auto with sets. Intro H'8; Apply H'5 with Y := A'; Auto with sets. Rewrite <- H'15; Auto with sets. Intro H'8. Elim H'7. Intros H'9 H'10; Apply H'10 Orelse Elim H'10; Try Assumption. Generalize H'6. Rewrite <- H'8. Rewrite <- H'15; Auto with sets. Qed. End Finite_sets_facts.