(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A->Prop. (** Definition of the reflexive-transitive closure [R*] of [R] *) (** Smallest reflexive [P] containing [R o P] *) Definition Rstar := [x,y:A](P:A->A->Prop) ((u:A)(P u u))->((u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)) -> (P x y). Theorem Rstar_reflexive: (x:A)(Rstar x x). Proof [x:A][P:A->A->Prop] [h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)] (h1 x). Theorem Rstar_R: (x:A)(y:A)(z:A)(R x y)->(Rstar y z)->(Rstar x z). Proof [x:A][y:A][z:A][t1:(R x y)][t2:(Rstar y z)] [P:A->A->Prop] [h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)] (h2 x y z t1 (t2 P h1 h2)). (** We conclude with transitivity of [Rstar] : *) Theorem Rstar_transitive: (x:A)(y:A)(z:A)(Rstar x y)->(Rstar y z)->(Rstar x z). Proof [x:A][y:A][z:A][h:(Rstar x y)] (h ([u:A][v:A](Rstar v z)->(Rstar u z)) ([u:A][t:(Rstar u z)]t) ([u:A][v:A][w:A][t1:(R u v)][t2:(Rstar w z)->(Rstar v z)] [t3:(Rstar w z)](Rstar_R u v z t1 (t2 t3)))). (** Another characterization of [R*] *) (** Smallest reflexive [P] containing [R o R*] *) Definition Rstar' := [x:A][y:A](P:A->A->Prop) ((P x x))->((u:A)(R x u)->(Rstar u y)->(P x y)) -> (P x y). Theorem Rstar'_reflexive: (x:A)(Rstar' x x). Proof [x:A][P:A->A->Prop][h:(P x x)][h':(u:A)(R x u)->(Rstar u x)->(P x x)]h. Theorem Rstar'_R: (x:A)(y:A)(z:A)(R x z)->(Rstar z y)->(Rstar' x y). Proof [x:A][y:A][z:A][t1:(R x z)][t2:(Rstar z y)] [P:A->A->Prop][h1:(P x x)] [h2:(u:A)(R x u)->(Rstar u y)->(P x y)](h2 z t1 t2). (** Equivalence of the two definitions: *) Theorem Rstar'_Rstar: (x:A)(y:A)(Rstar' x y)->(Rstar x y). Proof [x:A][y:A][h:(Rstar' x y)] (h Rstar (Rstar_reflexive x) ([u:A](Rstar_R x u y))). Theorem Rstar_Rstar': (x:A)(y:A)(Rstar x y)->(Rstar' x y). Proof [x:A][y:A][h:(Rstar x y)](h Rstar' ([u:A](Rstar'_reflexive u)) ([u:A][v:A][w:A][h1:(R u v)][h2:(Rstar' v w)] (Rstar'_R u w v h1 (Rstar'_Rstar v w h2)))). (** Property of Commutativity of two relations *) Definition commut := [A:Set][R1,R2:A->A->Prop] (x,y:A)(R1 y x)->(z:A)(R2 z y) ->(EX y':A |(R2 y' x) & (R1 z y')). End Rstar.