(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (relation A)->Prop := [R1,R2: (relation A)] (x,y:A) (R1 x y) -> (R2 x y). Section Clos_Refl_Trans. Lemma clos_rt_is_preorder: (preorder A (clos_refl_trans A R)). Apply Build_preorder. Exact (rt_refl A R). Exact (rt_trans A R). Qed. Lemma clos_rt_idempotent: (incl (clos_refl_trans A (clos_refl_trans A R)) (clos_refl_trans A R)). Red. NewInduction 1; Auto with sets. Intros. Apply rt_trans with y; Auto with sets. Qed. Lemma clos_refl_trans_ind_left: (A:Set)(R:A->A->Prop)(M:A)(P:A->Prop) (P M) ->((P0,N:A) (clos_refl_trans A R M P0)->(P P0)->(R P0 N)->(P N)) ->(a:A)(clos_refl_trans A R M a)->(P a). Intros. Generalize H H0 . Clear H H0. Elim H1; Intros; Auto with sets. Apply H2 with x; Auto with sets. Apply H3. Apply H0; Auto with sets. Intros. Apply H5 with P0; Auto with sets. Apply rt_trans with y; Auto with sets. Qed. End Clos_Refl_Trans. Section Clos_Refl_Sym_Trans. Lemma clos_rt_clos_rst: (inclusion A (clos_refl_trans A R) (clos_refl_sym_trans A R)). Red. NewInduction 1; Auto with sets. Apply rst_trans with y; Auto with sets. Qed. Lemma clos_rst_is_equiv: (equivalence A (clos_refl_sym_trans A R)). Apply Build_equivalence. Exact (rst_refl A R). Exact (rst_trans A R). Exact (rst_sym A R). Qed. Lemma clos_rst_idempotent: (incl (clos_refl_sym_trans A (clos_refl_sym_trans A R)) (clos_refl_sym_trans A R)). Red. NewInduction 1; Auto with sets. Apply rst_trans with y; Auto with sets. Qed. End Clos_Refl_Sym_Trans. End Properties.