(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A->Prop. Local Rstar := (Rstar A R). Local Rstar_reflexive := (Rstar_reflexive A R). Local Rstar_transitive := (Rstar_transitive A R). Local Rstar_Rstar' := (Rstar_Rstar' A R). Definition coherence := [x:A][y:A] (exT2 ? (Rstar x) (Rstar y)). Theorem coherence_intro : (x:A)(y:A)(z:A)(Rstar x z)->(Rstar y z)->(coherence x y). Proof [x:A][y:A][z:A][h1:(Rstar x z)][h2:(Rstar y z)] (exT_intro2 A (Rstar x) (Rstar y) z h1 h2). (** A very simple case of coherence : *) Lemma Rstar_coherence : (x:A)(y:A)(Rstar x y)->(coherence x y). Proof [x:A][y:A][h:(Rstar x y)](coherence_intro x y y h (Rstar_reflexive y)). (** coherence is symmetric *) Lemma coherence_sym: (x:A)(y:A)(coherence x y)->(coherence y x). Proof [x:A][y:A][h:(coherence x y)] (exT2_ind A (Rstar x) (Rstar y) (coherence y x) [w:A][h1:(Rstar x w)][h2:(Rstar y w)] (coherence_intro y x w h2 h1) h). Definition confluence := [x:A](y:A)(z:A)(Rstar x y)->(Rstar x z)->(coherence y z). Definition local_confluence := [x:A](y:A)(z:A)(R x y)->(R x z)->(coherence y z). Definition noetherian := (x:A)(P:A->Prop)((y:A)((z:A)(R y z)->(P z))->(P y))->(P x). Section Newman_section. (** The general hypotheses of the theorem *) Hypothesis Hyp1:noetherian. Hypothesis Hyp2:(x:A)(local_confluence x). (** The induction hypothesis *) Section Induct. Variable x:A. Hypothesis hyp_ind:(u:A)(R x u)->(confluence u). (** Confluence in [x] *) Variables y,z:A. Hypothesis h1:(Rstar x y). Hypothesis h2:(Rstar x z). (** particular case [x->u] and [u->*y] *) Section Newman_. Variable u:A. Hypothesis t1:(R x u). Hypothesis t2:(Rstar u y). (** In the usual diagram, we assume also [x->v] and [v->*z] *) Theorem Diagram : (v:A)(u1:(R x v))(u2:(Rstar v z))(coherence y z). Proof (* We draw the diagram ! *) [v:A][u1:(R x v)][u2:(Rstar v z)] (exT2_ind A (Rstar u) (Rstar v) (* local confluence in x for u,v *) (coherence y z) (* gives w, u->*w and v->*w *) ([w:A][s1:(Rstar u w)][s2:(Rstar v w)] (exT2_ind A (Rstar y) (Rstar w) (* confluence in u => coherence(y,w) *) (coherence y z) (* gives a, y->*a and z->*a *) ([a:A][v1:(Rstar y a)][v2:(Rstar w a)] (exT2_ind A (Rstar a) (Rstar z) (* confluence in v => coherence(a,z) *) (coherence y z) (* gives b, a->*b and z->*b *) ([b:A][w1:(Rstar a b)][w2:(Rstar z b)] (coherence_intro y z b (Rstar_transitive y a b v1 w1) w2)) (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2))) (hyp_ind u t1 y w t2 s1))) (Hyp2 x u v t1 u1)). Theorem caseRxy : (coherence y z). Proof (Rstar_Rstar' x z h2 ([v:A][w:A](coherence y w)) (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*) Diagram). (*i case x->v->*z i*) End Newman_. Theorem Ind_proof : (coherence y z). Proof (Rstar_Rstar' x y h1 ([u:A][v:A](coherence v z)) (Rstar_coherence x z h2) (*i case x=y i*) caseRxy). (*i case x->u->*z i*) End Induct. Theorem Newman : (x:A)(confluence x). Proof [x:A](Hyp1 x confluence Ind_proof). End Newman_section. End Newman.