(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R->Prop := [x,l:R](infinit_sum [i:nat]``/(INR (fact i))*(pow x i)`` l). Lemma exp_cof_no_R0 : (n:nat) ``/(INR (fact n))<>0``. Intro. Apply Rinv_neq_R0. Apply INR_fact_neq_0. Qed. Lemma exist_exp : (x:R)(SigT R [l:R](exp_in x l)). Intro; Generalize (Alembert_C3 [n:nat](Rinv (INR (fact n))) x exp_cof_no_R0 Alembert_exp). Unfold Pser exp_in. Trivial. Defined. Definition exp : R -> R := [x:R](projT1 ? ? (exist_exp x)). Lemma pow_i : (i:nat) (lt O i) -> (pow R0 i)==R0. Intros; Apply pow_ne_zero. Red; Intro; Rewrite H0 in H; Elim (lt_n_n ? H). Qed. (*i Calculus of $e^0$ *) Lemma exist_exp0 : (SigT R [l:R](exp_in R0 l)). Apply Specif.existT with R1. Unfold exp_in; Unfold infinit_sum; Intros. Exists O. Intros; Replace (sum_f_R0 ([i:nat]``/(INR (fact i))*(pow R0 i)``) n) with R1. Unfold R_dist; Replace ``1-1`` with R0; [Rewrite Rabsolu_R0; Assumption | Ring]. Induction n. Simpl; Rewrite Rinv_R1; Ring. Rewrite tech5. Rewrite <- Hrecn. Simpl. Ring. Unfold ge; Apply le_O_n. Defined. Lemma exp_0 : ``(exp 0)==1``. Cut (exp_in R0 (exp R0)). Cut (exp_in R0 R1). Unfold exp_in; Intros; EApply unicity_sum. Apply H0. Apply H. Exact (projT2 ? ? exist_exp0). Exact (projT2 ? ? (exist_exp R0)). Qed. (**************************************) (* Definition of hyperbolic functions *) (**************************************) Definition cosh : R->R := [x:R]``((exp x)+(exp (-x)))/2``. Definition sinh : R->R := [x:R]``((exp x)-(exp (-x)))/2``. Definition tanh : R->R := [x:R]``(sinh x)/(cosh x)``. Lemma cosh_0 : ``(cosh 0)==1``. Unfold cosh; Rewrite Ropp_O; Rewrite exp_0. Unfold Rdiv; Rewrite <- Rinv_r_sym; [Reflexivity | DiscrR]. Qed. Lemma sinh_0 : ``(sinh 0)==0``. Unfold sinh; Rewrite Ropp_O; Rewrite exp_0. Unfold Rminus Rdiv; Rewrite Rplus_Ropp_r; Apply Rmult_Ol. Qed. Definition cos_n [n:nat] : R := ``(pow (-1) n)/(INR (fact (mult (S (S O)) n)))``. Lemma simpl_cos_n : (n:nat) (Rdiv (cos_n (S n)) (cos_n n))==(Ropp (Rinv (INR (mult (mult (2) (S n)) (plus (mult (2) n) (1)))))). Intro; Unfold cos_n; Replace (S n) with (plus n (1)); [Idtac | Ring]. Rewrite pow_add; Unfold Rdiv; Rewrite Rinv_Rmult. Rewrite Rinv_Rinv. Replace ``(pow ( -1) n)*(pow ( -1) (S O))*/(INR (fact (mult (S (S O)) (plus n (S O)))))*(/(pow ( -1) n)*(INR (fact (mult (S (S O)) n))))`` with ``((pow ( -1) n)*/(pow ( -1) n))*/(INR (fact (mult (S (S O)) (plus n (S O)))))*(INR (fact (mult (S (S O)) n)))*(pow (-1) (S O))``; [Idtac | Ring]. Rewrite <- Rinv_r_sym. Rewrite Rmult_1l; Unfold pow; Rewrite Rmult_1r. Replace (mult (S (S O)) (plus n (S O))) with (S (S (mult (S (S O)) n))); [Idtac | Ring]. Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rinv_Rmult; Try (Apply not_O_INR; Discriminate). Rewrite <- (Rmult_sym ``-1``). Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Replace (S (mult (S (S O)) n)) with (plus (mult (S (S O)) n) (S O)); [Idtac | Ring]. Rewrite mult_INR; Rewrite Rinv_Rmult. Ring. Apply not_O_INR; Discriminate. Replace (plus (mult (S (S O)) n) (S O)) with (S (mult (S (S O)) n)); [Apply not_O_INR; Discriminate | Ring]. Apply INR_fact_neq_0. Apply INR_fact_neq_0. Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0]. Apply pow_nonzero; DiscrR. Apply INR_fact_neq_0. Apply pow_nonzero; DiscrR. Apply Rinv_neq_R0; Apply INR_fact_neq_0. Qed. Lemma archimed_cor1 : (eps:R) ``0 (EX N : nat | ``/(INR N) < eps``/\(lt O N)). Intros; Cut ``/eps < (IZR (up (/eps)))``. Intro; Cut `0<=(up (Rinv eps))`. Intro; Assert H2 := (IZN ? H1); Elim H2; Intros; Exists (max x (1)). Split. Cut ``0<(IZR (INZ x))``. Intro; Rewrite INR_IZR_INZ; Apply Rle_lt_trans with ``/(IZR (INZ x))``. Apply Rle_monotony_contra with (IZR (INZ x)). Assumption. Rewrite <- Rinv_r_sym; [Idtac | Red; Intro; Rewrite H5 in H4; Elim (Rlt_antirefl ? H4)]. Apply Rle_monotony_contra with (IZR (INZ (max x (1)))). Apply Rlt_le_trans with (IZR (INZ x)). Assumption. Repeat Rewrite <- INR_IZR_INZ; Apply le_INR; Apply le_max_l. Rewrite Rmult_1r; Rewrite (Rmult_sym (IZR (INZ (max x (S O))))); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Repeat Rewrite <- INR_IZR_INZ; Apply le_INR; Apply le_max_l. Rewrite <- INR_IZR_INZ; Apply not_O_INR. Red; Intro;Assert H6 := (le_max_r x (1)); Cut (lt O (1)); [Intro | Apply lt_O_Sn]; Assert H8 := (lt_le_trans ? ? ? H7 H6); Rewrite H5 in H8; Elim (lt_n_n ? H8). Pattern 1 eps; Rewrite <- Rinv_Rinv. Apply Rinv_lt. Apply Rmult_lt_pos; [Apply Rlt_Rinv; Assumption | Assumption]. Rewrite H3 in H0; Assumption. Red; Intro; Rewrite H5 in H; Elim (Rlt_antirefl ? H). Apply Rlt_trans with ``/eps``. Apply Rlt_Rinv; Assumption. Rewrite H3 in H0; Assumption. Apply lt_le_trans with (1); [Apply lt_O_Sn | Apply le_max_r]. Apply le_IZR; Replace (IZR `0`) with R0; [Idtac | Reflexivity]; Left; Apply Rlt_trans with ``/eps``; [Apply Rlt_Rinv; Assumption | Assumption]. Assert H0 := (archimed ``/eps``). Elim H0; Intros; Assumption. Qed. Lemma Alembert_cos : (Un_cv [n:nat]``(Rabsolu (cos_n (S n))/(cos_n n))`` R0). Unfold Un_cv; Intros. Assert H0 := (archimed_cor1 eps H). Elim H0; Intros; Exists x. Intros; Rewrite simpl_cos_n; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Rewrite Rabsolu_Ropp; Rewrite Rabsolu_right. Rewrite mult_INR; Rewrite Rinv_Rmult. Cut ``/(INR (mult (S (S O)) (S n)))<1``. Intro; Cut ``/(INR (plus (mult (S (S O)) n) (S O)))0``. Intro; Unfold cos_n; Unfold Rdiv; Apply prod_neq_R0. Apply pow_nonzero; DiscrR. Apply Rinv_neq_R0. Apply INR_fact_neq_0. Qed. (**********) Definition cos_in:R->R->Prop := [x,l:R](infinit_sum [i:nat]``(cos_n i)*(pow x i)`` l). (**********) Lemma exist_cos : (x:R)(SigT R [l:R](cos_in x l)). Intro; Generalize (Alembert_C3 cos_n x cosn_no_R0 Alembert_cos). Unfold Pser cos_in; Trivial. Qed. (* Definition of cosinus *) (*************************) Definition cos : R -> R := [x:R](Cases (exist_cos (Rsqr x)) of (Specif.existT a b) => a end). Definition sin_n [n:nat] : R := ``(pow (-1) n)/(INR (fact (plus (mult (S (S O)) n) (S O))))``. Lemma simpl_sin_n : (n:nat) (Rdiv (sin_n (S n)) (sin_n n))==(Ropp (Rinv (INR (mult (plus (mult (2) (S n)) (1)) (mult (2) (S n)))))). Intro; Unfold sin_n; Replace (S n) with (plus n (1)); [Idtac | Ring]. Rewrite pow_add; Unfold Rdiv; Rewrite Rinv_Rmult. Rewrite Rinv_Rinv. Replace ``(pow ( -1) n)*(pow ( -1) (S O))*/(INR (fact (plus (mult (S (S O)) (plus n (S O))) (S O))))*(/(pow ( -1) n)*(INR (fact (plus (mult (S (S O)) n) (S O)))))`` with ``((pow ( -1) n)*/(pow ( -1) n))*/(INR (fact (plus (mult (S (S O)) (plus n (S O))) (S O))))*(INR (fact (plus (mult (S (S O)) n) (S O))))*(pow (-1) (S O))``; [Idtac | Ring]. Rewrite <- Rinv_r_sym. Rewrite Rmult_1l; Unfold pow; Rewrite Rmult_1r; Replace (plus (mult (S (S O)) (plus n (S O))) (S O)) with (S (S (plus (mult (S (S O)) n) (S O)))). Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rinv_Rmult. Rewrite <- (Rmult_sym ``-1``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Replace (S (plus (mult (S (S O)) n) (S O))) with (mult (S (S O)) (plus n (S O))). Repeat Rewrite mult_INR; Repeat Rewrite Rinv_Rmult. Ring. Apply not_O_INR; Discriminate. Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring]. Apply not_O_INR; Discriminate. Apply prod_neq_R0. Apply not_O_INR; Discriminate. Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring]. Apply not_O_INR; Discriminate. Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring]. Rewrite mult_plus_distr_r; Cut (n:nat) (S n)=(plus n (1)). Intros; Rewrite (H (plus (mult (2) n) (1))). Ring. Intros; Ring. Apply INR_fact_neq_0. Apply not_O_INR; Discriminate. Apply INR_fact_neq_0. Apply not_O_INR; Discriminate. Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0]. Cut (n:nat) (S (S n))=(plus n (2)); [Intros; Rewrite (H (plus (mult (2) n) (1))); Ring | Intros; Ring]. Apply pow_nonzero; DiscrR. Apply INR_fact_neq_0. Apply pow_nonzero; DiscrR. Apply Rinv_neq_R0; Apply INR_fact_neq_0. Qed. Lemma Alembert_sin : (Un_cv [n:nat]``(Rabsolu (sin_n (S n))/(sin_n n))`` R0). Unfold Un_cv; Intros; Assert H0 := (archimed_cor1 eps H). Elim H0; Intros; Exists x. Intros; Rewrite simpl_sin_n; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Rewrite Rabsolu_Ropp; Rewrite Rabsolu_right. Rewrite mult_INR; Rewrite Rinv_Rmult. Cut ``/(INR (mult (S (S O)) (S n)))<1``. Intro; Cut ``/(INR (plus (mult (S (S O)) (S n)) (S O)))0``. Intro; Unfold sin_n; Unfold Rdiv; Apply prod_neq_R0. Apply pow_nonzero; DiscrR. Apply Rinv_neq_R0; Apply INR_fact_neq_0. Qed. (**********) Definition sin_in:R->R->Prop := [x,l:R](infinit_sum [i:nat]``(sin_n i)*(pow x i)`` l). (**********) Lemma exist_sin : (x:R)(SigT R [l:R](sin_in x l)). Intro; Generalize (Alembert_C3 sin_n x sin_no_R0 Alembert_sin). Unfold Pser sin_n; Trivial. Qed. (***********************) (* Definition of sinus *) Definition sin : R -> R := [x:R](Cases (exist_sin (Rsqr x)) of (Specif.existT a b) => ``x*a`` end). (*********************************************) (* PROPERTIES *) (*********************************************) Lemma cos_sym : (x:R) ``(cos x)==(cos (-x))``. Intros; Unfold cos; Replace ``(Rsqr (-x))`` with (Rsqr x). Reflexivity. Apply Rsqr_neg. Qed. Lemma sin_antisym : (x:R)``(sin (-x))==-(sin x)``. Intro; Unfold sin; Replace ``(Rsqr (-x))`` with (Rsqr x); [Idtac | Apply Rsqr_neg]. Case (exist_sin (Rsqr x)); Intros; Ring. Qed. Lemma sin_0 : ``(sin 0)==0``. Unfold sin; Case (exist_sin (Rsqr R0)). Intros; Ring. Qed. Lemma exist_cos0 : (SigT R [l:R](cos_in R0 l)). Apply Specif.existT with R1. Unfold cos_in; Unfold infinit_sum; Intros; Exists O. Intros. Unfold R_dist. Induction n. Unfold cos_n; Simpl. Unfold Rdiv; Rewrite Rinv_R1. Do 2 Rewrite Rmult_1r. Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. Rewrite tech5. Replace ``(cos_n (S n))*(pow 0 (S n))`` with R0. Rewrite Rplus_Or. Apply Hrecn; Unfold ge; Apply le_O_n. Simpl; Ring. Defined. (* Calculus of (cos 0) *) Lemma cos_0 : ``(cos 0)==1``. Cut (cos_in R0 (cos R0)). Cut (cos_in R0 R1). Unfold cos_in; Intros; EApply unicity_sum. Apply H0. Apply H. Exact (projT2 ? ? exist_cos0). Assert H := (projT2 ? ? (exist_cos (Rsqr R0))); Unfold cos; Pattern 1 R0; Replace R0 with (Rsqr R0); [Exact H | Apply Rsqr_O]. Qed.