(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 0``; [DiscrR | Unfold Rdiv; Rewrite Rinv_Rmult; Try Ring]. Qed. Lemma sin_PI3_cos_PI6 : ``(sin (PI/3))==(cos (PI/6))``. Proof with Trivial. Replace ``PI/6`` with ``(PI/2)-(PI/3)``. Rewrite cos_shift. Assert H0 : ``6<>0``; [DiscrR | Idtac]. Assert H1 : ``3<>0``; [DiscrR | Idtac]. Assert H2 : ``2<>0``; [DiscrR | Idtac]. Apply r_Rmult_mult with ``6``. Rewrite Rminus_distr; Repeat Rewrite (Rmult_sym ``6``). Unfold Rdiv; Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite (Rmult_sym ``/3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. Pattern 2 PI; Rewrite (Rmult_sym PI); Repeat Rewrite Rmult_1r; Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. Ring. Qed. Lemma sin_PI6_cos_PI3 : ``(cos (PI/3))==(sin (PI/6))``. Proof with Trivial. Replace ``PI/6`` with ``(PI/2)-(PI/3)``. Rewrite sin_shift. Assert H0 : ``6<>0``; [DiscrR | Idtac]. Assert H1 : ``3<>0``; [DiscrR | Idtac]. Assert H2 : ``2<>0``; [DiscrR | Idtac]. Apply r_Rmult_mult with ``6``. Rewrite Rminus_distr; Repeat Rewrite (Rmult_sym ``6``). Unfold Rdiv; Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite (Rmult_sym ``/3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. Pattern 2 PI; Rewrite (Rmult_sym PI); Repeat Rewrite Rmult_1r; Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. Ring. Qed. Lemma PI6_RGT_0 : ``00``; [DiscrR | Idtac]. Apply r_Rmult_mult with ``2*(cos (PI/6))``. Replace ``2*(cos (PI/6))*(sin (PI/6))`` with ``2*(sin (PI/6))*(cos (PI/6))``. Rewrite <- sin_2a; Replace ``2*(PI/6)`` with ``PI/3``. Rewrite sin_PI3_cos_PI6. Unfold Rdiv; Rewrite Rmult_1l; Rewrite Rmult_assoc; Pattern 2 ``2``; Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Unfold Rdiv; Rewrite Rinv_Rmult. Rewrite (Rmult_sym ``/2``); Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. DiscrR. Ring. Apply prod_neq_R0. Cut ``0<(cos (PI/6))``; [Intro H1; Auto with real | Apply cos_gt_0; [Apply (Rlt_trans ``-(PI/2)`` ``0`` ``PI/6`` _PI2_RLT_0 PI6_RGT_0) | Apply PI6_RLT_PI2]]. Qed. Lemma sqrt2_neq_0 : ~``(sqrt 2)==0``. Assert Hyp:``0<2``; [Sup0 | Generalize (Rlt_le ``0`` ``2`` Hyp); Intro H1; Red; Intro H2; Generalize (sqrt_eq_0 ``2`` H1 H2); Intro H; Absurd ``2==0``; [ DiscrR | Assumption]]. Qed. Lemma R1_sqrt2_neq_0 : ~``1/(sqrt 2)==0``. Generalize (Rinv_neq_R0 ``(sqrt 2)`` sqrt2_neq_0); Intro H; Generalize (prod_neq_R0 ``1`` ``(Rinv (sqrt 2))`` R1_neq_R0 H); Intro H0; Assumption. Qed. Lemma sqrt3_2_neq_0 : ~``2*(sqrt 3)==0``. Apply prod_neq_R0; [DiscrR | Assert Hyp:``0<3``; [Sup0 | Generalize (Rlt_le ``0`` ``3`` Hyp); Intro H1; Red; Intro H2; Generalize (sqrt_eq_0 ``3`` H1 H2); Intro H; Absurd ``3==0``; [ DiscrR | Assumption]]]. Qed. Lemma Rlt_sqrt2_0 : ``0<(sqrt 2)``. Assert Hyp:``0<2``; [Sup0 | Generalize (sqrt_positivity ``2`` (Rlt_le ``0`` ``2`` Hyp)); Intro H1; Elim H1; Intro H2; [Assumption | Absurd ``0 == (sqrt 2)``; [Apply not_sym; Apply sqrt2_neq_0 | Assumption]]]. Qed. Lemma Rlt_sqrt3_0 : ``0<(sqrt 3)``. Cut ~(O=(1)); [Intro H0; Assert Hyp:``0<2``; [Sup0 | Generalize (Rlt_le ``0`` ``2`` Hyp); Intro H1; Assert Hyp2:``0<3``; [Sup0 | Generalize (Rlt_le ``0`` ``3`` Hyp2); Intro H2; Generalize (lt_INR_0 (1) (neq_O_lt (1) H0)); Unfold INR; Intro H3; Generalize (Rlt_compatibility ``2`` ``0`` ``1`` H3); Rewrite Rplus_sym; Rewrite Rplus_Ol; Replace ``2+1`` with ``3``; [Intro H4; Generalize (sqrt_lt_1 ``2`` ``3`` H1 H2 H4); Clear H3; Intro H3; Apply (Rlt_trans ``0`` ``(sqrt 2)`` ``(sqrt 3)`` Rlt_sqrt2_0 H3) | Ring]]] | Discriminate]. Qed. Lemma PI4_RGT_0 : ``00``; [DiscrR | Idtac]. Unfold Rsqr; Pattern 1 ``(cos (PI/4))``; Rewrite <- sin_cos_PI4; Replace ``(sin (PI/4))*(cos (PI/4))`` with ``(1/2)*(2*(sin (PI/4))*(cos (PI/4)))``. Rewrite <- sin_2a; Replace ``2*(PI/4)`` with ``PI/2``. Rewrite sin_PI2. Apply Rmult_1r. Unfold Rdiv; Rewrite (Rmult_sym ``2``); Rewrite Rinv_Rmult. Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Unfold Rdiv; Rewrite Rmult_1l; Repeat Rewrite <- Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1l. Left; Sup. Apply sqrt2_neq_0. Qed. Lemma sin_PI4 : ``(sin (PI/4))==1/(sqrt 2)``. Rewrite sin_cos_PI4; Apply cos_PI4. Qed. Lemma tan_PI4 : ``(tan (PI/4))==1``. Unfold tan; Rewrite sin_cos_PI4. Unfold Rdiv; Apply Rinv_r. Change ``(cos (PI/4))<>0``; Rewrite cos_PI4; Apply R1_sqrt2_neq_0. Qed. Lemma cos3PI4 : ``(cos (3*(PI/4)))==-1/(sqrt 2)``. Proof with Trivial. Replace ``3*(PI/4)`` with ``(PI/2)-(-(PI/4))``. Rewrite cos_shift; Rewrite sin_neg; Rewrite sin_PI4. Unfold Rdiv; Rewrite Ropp_mul1. Unfold Rminus; Rewrite Ropp_Ropp; Pattern 1 PI; Rewrite double_var; Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_Rmult; [Ring | DiscrR | DiscrR]. Qed. Lemma sin3PI4 : ``(sin (3*(PI/4)))==1/(sqrt 2)``. Proof with Trivial. Replace ``3*(PI/4)`` with ``(PI/2)-(-(PI/4))``. Rewrite sin_shift; Rewrite cos_neg; Rewrite cos_PI4. Unfold Rminus; Rewrite Ropp_Ropp; Pattern 1 PI; Rewrite double_var; Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_Rmult; [Ring | DiscrR | DiscrR]. Qed. Lemma cos_PI6 : ``(cos (PI/6))==(sqrt 3)/2``. Proof with Trivial. Apply Rsqr_inj. Apply cos_ge_0. Left; Apply (Rlt_trans ``-(PI/2)`` R0 ``PI/6`` _PI2_RLT_0 PI6_RGT_0). Left; Apply PI6_RLT_PI2. Left; Apply (Rmult_lt_pos ``(sqrt 3)`` ``(Rinv 2)``). Apply Rlt_sqrt3_0. Apply Rlt_Rinv; Sup0. Assert H : ``2<>0``; [DiscrR | Idtac]. Assert H1 : ``4<>0``; [Apply prod_neq_R0 | Idtac]. Rewrite Rsqr_div. Rewrite cos2; Unfold Rsqr; Rewrite sin_PI6; Rewrite sqrt_def. Unfold Rdiv; Rewrite Rmult_1l; Apply r_Rmult_mult with ``4``. Rewrite Rminus_distr; Rewrite (Rmult_sym ``3``); Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. Rewrite Rmult_1l; Rewrite Rmult_1r. Rewrite <- (Rmult_sym ``/2``); Repeat Rewrite <- Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1l; Rewrite <- Rinv_r_sym. Ring. Left; Sup0. Qed. Lemma tan_PI6 : ``(tan (PI/6))==1/(sqrt 3)``. Unfold tan; Rewrite sin_PI6; Rewrite cos_PI6; Unfold Rdiv; Repeat Rewrite Rmult_1l; Rewrite Rinv_Rmult. Rewrite Rinv_Rinv. Rewrite (Rmult_sym ``/2``); Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. Apply Rmult_1r. DiscrR. DiscrR. Red; Intro; Assert H1 := Rlt_sqrt3_0; Rewrite H in H1; Elim (Rlt_antirefl ``0`` H1). Apply Rinv_neq_R0; DiscrR. Qed. Lemma sin_PI3 : ``(sin (PI/3))==(sqrt 3)/2``. Rewrite sin_PI3_cos_PI6; Apply cos_PI6. Qed. Lemma cos_PI3 : ``(cos (PI/3))==1/2``. Rewrite sin_PI6_cos_PI3; Apply sin_PI6. Qed. Lemma tan_PI3 : ``(tan (PI/3))==(sqrt 3)``. Unfold tan; Rewrite sin_PI3; Rewrite cos_PI3; Unfold Rdiv; Rewrite Rmult_1l; Rewrite Rinv_Rinv. Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Apply Rmult_1r. DiscrR. DiscrR. Qed. Lemma sin_2PI3 : ``(sin (2*(PI/3)))==(sqrt 3)/2``. Rewrite double; Rewrite sin_plus; Rewrite sin_PI3; Rewrite cos_PI3; Unfold Rdiv; Repeat Rewrite Rmult_1l; Rewrite (Rmult_sym ``/2``); Repeat Rewrite <- Rmult_assoc; Rewrite double_var; Reflexivity. Qed. Lemma cos_2PI3 : ``(cos (2*(PI/3)))==-1/2``. Proof with Trivial. Assert H : ``2<>0``; [DiscrR | Idtac]. Assert H0 : ``4<>0``; [Apply prod_neq_R0 | Idtac]. Rewrite double; Rewrite cos_plus; Rewrite sin_PI3; Rewrite cos_PI3; Unfold Rdiv; Rewrite Rmult_1l; Apply r_Rmult_mult with ``4``. Rewrite Rminus_distr; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``). Repeat Rewrite Rmult_assoc; Rewrite <- (Rinv_l_sym). Rewrite Rmult_1r; Rewrite <- Rinv_r_sym. Pattern 4 ``2``; Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite Ropp_mul3; Rewrite Rmult_1r. Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite (Rmult_sym ``2``); Rewrite (Rmult_sym ``/2``). Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite sqrt_def. Ring. Left; Sup. Qed. Lemma tan_2PI3 : ``(tan (2*(PI/3)))==-(sqrt 3)``. Proof with Trivial. Assert H : ``2<>0``; [DiscrR | Idtac]. Unfold tan; Rewrite sin_2PI3; Rewrite cos_2PI3; Unfold Rdiv; Rewrite Ropp_mul1; Rewrite Rmult_1l; Rewrite <- Ropp_Rinv. Rewrite Rinv_Rinv. Rewrite Rmult_assoc; Rewrite Ropp_mul3; Rewrite <- Rinv_l_sym. Ring. Apply Rinv_neq_R0. Qed. Lemma cos_5PI4 : ``(cos (5*(PI/4)))==-1/(sqrt 2)``. Proof with Trivial. Replace ``5*(PI/4)`` with ``(PI/4)+(PI)``. Rewrite neg_cos; Rewrite cos_PI4; Unfold Rdiv; Rewrite Ropp_mul1. Pattern 2 PI; Rewrite double_var; Pattern 2 3 PI; Rewrite double_var; Assert H : ``2<>0``; [DiscrR | Unfold Rdiv; Repeat Rewrite Rinv_Rmult; Try Ring]. Qed. Lemma sin_5PI4 : ``(sin (5*(PI/4)))==-1/(sqrt 2)``. Proof with Trivial. Replace ``5*(PI/4)`` with ``(PI/4)+(PI)``. Rewrite neg_sin; Rewrite sin_PI4; Unfold Rdiv; Rewrite Ropp_mul1. Pattern 2 PI; Rewrite double_var; Pattern 2 3 PI; Rewrite double_var; Assert H : ``2<>0``; [DiscrR | Unfold Rdiv; Repeat Rewrite Rinv_Rmult; Try Ring]. Qed. Lemma sin_cos5PI4 : ``(cos (5*(PI/4)))==(sin (5*(PI/4)))``. Rewrite cos_5PI4; Rewrite sin_5PI4; Reflexivity. Qed. Lemma Rgt_3PI2_0 : ``0<3*(PI/2)``. Apply Rmult_lt_pos; [Sup0 | Unfold Rdiv; Apply Rmult_lt_pos; [Apply PI_RGT_0 | Apply Rlt_Rinv; Sup0]]. Qed. Lemma Rgt_2PI_0 : ``0<2*PI``. Apply Rmult_lt_pos; [Sup0 | Apply PI_RGT_0]. Qed. Lemma Rlt_PI_3PI2 : ``PI<3*(PI/2)``. Generalize PI2_RGT_0; Intro H1; Generalize (Rlt_compatibility PI ``0`` ``PI/2`` H1); Replace ``PI+(PI/2)`` with ``3*(PI/2)``. Rewrite Rplus_Or; Intro H2; Assumption. Pattern 2 PI; Rewrite double_var; Ring. Qed. Lemma Rlt_3PI2_2PI : ``3*(PI/2)<2*PI``. Generalize PI2_RGT_0; Intro H1; Generalize (Rlt_compatibility ``3*(PI/2)`` ``0`` ``PI/2`` H1); Replace ``3*(PI/2)+(PI/2)`` with ``2*PI``. Rewrite Rplus_Or; Intro H2; Assumption. Rewrite double; Pattern 1 2 PI; Rewrite double_var; Ring. Qed. (***************************************************************) (* Radian -> Degree | Degree -> Radian *) (***************************************************************) Definition plat : R := ``180``. Definition toRad [x:R] : R := ``x*PI*/plat``. Definition toDeg [x:R] : R := ``x*plat*/PI``. Lemma rad_deg : (x:R) (toRad (toDeg x))==x. Intro; Unfold toRad toDeg; Replace ``x*plat*/PI*PI*/plat`` with ``x*(plat*/plat)*(PI*/PI)``; [Idtac | Ring]. Repeat Rewrite <- Rinv_r_sym. Ring. Apply PI_neq0. Unfold plat; DiscrR. Qed. Lemma toRad_inj : (x,y:R) (toRad x)==(toRad y) -> x==y. Intros; Unfold toRad in H; Apply r_Rmult_mult with PI. Rewrite <- (Rmult_sym x); Rewrite <- (Rmult_sym y). Apply r_Rmult_mult with ``/plat``. Rewrite <- (Rmult_sym ``x*PI``); Rewrite <- (Rmult_sym ``y*PI``); Assumption. Apply Rinv_neq_R0; Unfold plat; DiscrR. Apply PI_neq0. Qed. Lemma deg_rad : (x:R) (toDeg (toRad x))==x. Intro x; Apply toRad_inj; Rewrite -> (rad_deg (toRad x)); Reflexivity. Qed. Definition sind [x:R] : R := (sin (toRad x)). Definition cosd [x:R] : R := (cos (toRad x)). Definition tand [x:R] : R := (tan (toRad x)). Lemma Rsqr_sin_cos_d_one : (x:R) ``(Rsqr (sind x))+(Rsqr (cosd x))==1``. Intro x; Unfold sind; Unfold cosd; Apply sin2_cos2. Qed. (***************************************************) (* Other properties *) (***************************************************) Lemma sin_lb_ge_0 : (a:R) ``0<=a``->``a<=PI/2``->``0<=(sin_lb a)``. Intros; Case (total_order R0 a); Intro. Left; Apply sin_lb_gt_0; Assumption. Elim H1; Intro. Rewrite <- H2; Unfold sin_lb; Unfold sin_approx; Unfold sum_f_R0; Unfold sin_term; Repeat Rewrite pow_ne_zero. Unfold Rdiv; Repeat Rewrite Rmult_Ol; Repeat Rewrite Rmult_Or; Repeat Rewrite Rplus_Or; Right; Reflexivity. Discriminate. Discriminate. Discriminate. Discriminate. Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` a ``0`` H H2)). Qed.