(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R := [i:nat] ``(pow (-1) i)*(pow a (plus (mult (S (S O)) i) (S O)))/(INR (fact (plus (mult (S (S O)) i) (S O))))``. Definition cos_term [a:R] : nat->R := [i:nat] ``(pow (-1) i)*(pow a (mult (S (S O)) i))/(INR (fact (mult (S (S O)) i)))``. Definition sin_approx [a:R;n:nat] : R := (sum_f_R0 (sin_term a) n). Definition cos_approx [a:R;n:nat] : R := (sum_f_R0 (cos_term a) n). (**********) Lemma PI_4 : ``PI<=4``. Assert H0 := (PI_ineq O). Elim H0; Clear H0; Intros _ H0. Unfold tg_alt PI_tg in H0; Simpl in H0. Rewrite Rinv_R1 in H0; Rewrite Rmult_1r in H0; Unfold Rdiv in H0. Apply Rle_monotony_contra with ``/4``. Apply Rlt_Rinv; Sup0. Rewrite <- Rinv_l_sym; [Rewrite Rmult_sym; Assumption | DiscrR]. Qed. (**********) Theorem sin_bound : (a:R; n:nat) ``0 <= a``->``a <= PI``->``(sin_approx a (plus (mult (S (S O)) n) (S O))) <= (sin a)<= (sin_approx a (mult (S (S O)) (plus n (S O))))``. Intros; Case (Req_EM a R0); Intro Hyp_a. Rewrite Hyp_a; Rewrite sin_0; Split; Right; Unfold sin_approx; Apply sum_eq_R0 Orelse (Symmetry; Apply sum_eq_R0); Intros; Unfold sin_term; Rewrite pow_add; Simpl; Unfold Rdiv; Rewrite Rmult_Ol; Ring. Unfold sin_approx; Cut ``0 (Rle (Rplus a (sum_f_R0 [i:nat](sin_term a (S i)) (pred (plus (mult (S (S O)) n) (S O))))) (sin a))/\(Rle (sin a) (Rplus a (sum_f_R0 [i:nat](sin_term a (S i)) (pred (mult (S (S O)) (plus n (S O))))))). Intro; Apply H1. Pose Un := [n:nat]``(pow a (plus (mult (S (S O)) (S n)) (S O)))/(INR (fact (plus (mult (S (S O)) (S n)) (S O))))``. Replace (pred (plus (mult (S (S O)) n) (S O))) with (mult (S (S O)) n). Replace (pred (mult (S (S O)) (plus n (S O)))) with (S (mult (S (S O)) n)). Replace (sum_f_R0 [i:nat](sin_term a (S i)) (mult (S (S O)) n)) with ``-(sum_f_R0 (tg_alt Un) (mult (S (S O)) n))``. Replace (sum_f_R0 [i:nat](sin_term a (S i)) (S (mult (S (S O)) n))) with ``-(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n)))``. Cut ``(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n)))<=a-(sin a)<=(sum_f_R0 (tg_alt Un) (mult (S (S O)) n))``->`` -(sum_f_R0 (tg_alt Un) (mult (S (S O)) n)) <= (sin a)-a <= -(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n)))``. Intro; Apply H2. Apply alternated_series_ineq. Unfold Un_decreasing Un; Intro; Cut (plus (mult (S (S O)) (S (S n0))) (S O))=(S (S (plus (mult (S (S O)) (S n0)) (S O)))). Intro; Rewrite H3. Replace ``(pow a (S (S (plus (mult (S (S O)) (S n0)) (S O)))))`` with ``(pow a (plus (mult (S (S O)) (S n0)) (S O)))*(a*a)``. Unfold Rdiv; Rewrite Rmult_assoc; Apply Rle_monotony. Left; Apply pow_lt; Assumption. Apply Rle_monotony_contra with ``(INR (fact (S (S (plus (mult (S (S O)) (S n0)) (S O))))))``. Rewrite <- H3; Apply lt_INR_0; Apply neq_O_lt; Red; Intro; Assert H5 := (sym_eq ? ? ? H4); Elim (fact_neq_0 ? H5). Rewrite <- H3; Rewrite (Rmult_sym ``(INR (fact (plus (mult (S (S O)) (S (S n0))) (S O))))``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite H3; Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. Rewrite Rmult_1r. Do 2 Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Simpl; Replace ``((0+1+1)*((INR n0)+1)+(0+1)+1+1)*((0+1+1)*((INR n0)+1)+(0+1)+1)`` with ``4*(INR n0)*(INR n0)+18*(INR n0)+20``; [Idtac | Ring]. Apply Rle_trans with ``20``. Apply Rle_trans with ``16``. Replace ``16`` with ``(Rsqr 4)``; [Idtac | SqRing]. Replace ``a*a`` with (Rsqr a); [Idtac | Reflexivity]. Apply Rsqr_incr_1. Apply Rle_trans with PI; [Assumption | Apply PI_4]. Assumption. Left; Sup0. Rewrite <- (Rplus_Or ``16``); Replace ``20`` with ``16+4``; [Apply Rle_compatibility; Left; Sup0 | Ring]. Rewrite <- (Rplus_sym ``20``); Pattern 1 ``20``; Rewrite <- Rplus_Or; Apply Rle_compatibility. Apply ge0_plus_ge0_is_ge0. Repeat Apply Rmult_le_pos. Left; Sup0. Left; Sup0. Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. Apply Rmult_le_pos. Left; Sup0. Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. Apply INR_fact_neq_0. Apply INR_fact_neq_0. Simpl; Ring. Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Assert H3 := (cv_speed_pow_fact a); Unfold Un; Unfold Un_cv in H3; Unfold R_dist in H3; Unfold Un_cv; Unfold R_dist; Intros; Elim (H3 eps H4); Intros N H5. Exists N; Intros; Apply H5. Replace (plus (mult (2) (S n0)) (1)) with (S (mult (2) (S n0))). Unfold ge; Apply le_trans with (mult (2) (S n0)). Apply le_trans with (mult (2) (S N)). Apply le_trans with (mult (2) N). Apply le_n_2n. Apply mult_le; Apply le_n_Sn. Apply mult_le; Apply le_n_S; Assumption. Apply le_n_Sn. Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Reflexivity. Assert X := (exist_sin (Rsqr a)); Elim X; Intros. Cut ``x==(sin a)/a``. Intro; Rewrite H3 in p; Unfold sin_in in p; Unfold infinit_sum in p; Unfold R_dist in p; Unfold Un_cv; Unfold R_dist; Intros. Cut ``0``a <= PI/2``->``(cos_approx a (plus (mult (S (S O)) n) (S O))) <= (cos a) <= (cos_approx a (mult (S (S O)) (plus n (S O))))``. Cut ((a:R; n:nat) ``0 <= a``->``a <= PI/2``->``(cos_approx a (plus (mult (S (S O)) n) (S O))) <= (cos a) <= (cos_approx a (mult (S (S O)) (plus n (S O))))``) -> ((a:R; n:nat) `` -PI/2 <= a``->``a <= PI/2``->``(cos_approx a (plus (mult (S (S O)) n) (S O))) <= (cos a) <= (cos_approx a (mult (S (S O)) (plus n (S O))))``). Intros H a n; Apply H. Intros; Unfold cos_approx. Rewrite (decomp_sum (cos_term a0) (plus (mult (S (S O)) n0) (S O))). Rewrite (decomp_sum (cos_term a0) (mult (S (S O)) (plus n0 (S O)))). Replace (cos_term a0 O) with R1. Cut (Rle (sum_f_R0 [i:nat](cos_term a0 (S i)) (pred (plus (mult (S (S O)) n0) (S O)))) ``(cos a0)-1``)/\(Rle ``(cos a0)-1`` (sum_f_R0 [i:nat](cos_term a0 (S i)) (pred (mult (S (S O)) (plus n0 (S O)))))) -> (Rle (Rplus R1 (sum_f_R0 [i:nat](cos_term a0 (S i)) (pred (plus (mult (S (S O)) n0) (S O))))) (cos a0))/\(Rle (cos a0) (Rplus R1 (sum_f_R0 [i:nat](cos_term a0 (S i)) (pred (mult (S (S O)) (plus n0 (S O))))))). Intro; Apply H2. Pose Un := [n:nat]``(pow a0 (mult (S (S O)) (S n)))/(INR (fact (mult (S (S O)) (S n))))``. Replace (pred (plus (mult (S (S O)) n0) (S O))) with (mult (S (S O)) n0). Replace (pred (mult (S (S O)) (plus n0 (S O)))) with (S (mult (S (S O)) n0)). Replace (sum_f_R0 [i:nat](cos_term a0 (S i)) (mult (S (S O)) n0)) with ``-(sum_f_R0 (tg_alt Un) (mult (S (S O)) n0))``. Replace (sum_f_R0 [i:nat](cos_term a0 (S i)) (S (mult (S (S O)) n0))) with ``-(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n0)))``. Cut ``(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n0)))<=1-(cos a0)<=(sum_f_R0 (tg_alt Un) (mult (S (S O)) n0))``->`` -(sum_f_R0 (tg_alt Un) (mult (S (S O)) n0)) <= (cos a0)-1 <= -(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n0)))``. Intro; Apply H3. Apply alternated_series_ineq. Unfold Un_decreasing; Intro; Unfold Un. Cut (mult (S (S O)) (S (S n1)))=(S (S (mult (S (S O)) (S n1)))). Intro; Rewrite H4; Replace ``(pow a0 (S (S (mult (S (S O)) (S n1)))))`` with ``(pow a0 (mult (S (S O)) (S n1)))*(a0*a0)``. Unfold Rdiv; Rewrite Rmult_assoc; Apply Rle_monotony. Apply pow_le; Assumption. Apply Rle_monotony_contra with ``(INR (fact (S (S (mult (S (S O)) (S n1))))))``. Rewrite <- H4; Apply lt_INR_0; Apply neq_O_lt; Red; Intro; Assert H6 := (sym_eq ? ? ? H5); Elim (fact_neq_0 ? H6). Rewrite <- H4; Rewrite (Rmult_sym ``(INR (fact (mult (S (S O)) (S (S n1)))))``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite H4; Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. Rewrite Rmult_1r; Do 2 Rewrite S_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Simpl; Replace ``((0+1+1)*((INR n1)+1)+1+1)*((0+1+1)*((INR n1)+1)+1)`` with ``4*(INR n1)*(INR n1)+14*(INR n1)+12``; [Idtac | Ring]. Apply Rle_trans with ``12``. Apply Rle_trans with ``4``. Replace ``4`` with ``(Rsqr 2)``; [Idtac | SqRing]. Replace ``a0*a0`` with (Rsqr a0); [Idtac | Reflexivity]. Apply Rsqr_incr_1. Apply Rle_trans with ``PI/2``. Assumption. Unfold Rdiv; Apply Rle_monotony_contra with ``2``. Sup0. Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m. Replace ``2*2`` with ``4``; [Apply PI_4 | Ring]. DiscrR. Assumption. Left; Sup0. Pattern 1 ``4``; Rewrite <- Rplus_Or; Replace ``12`` with ``4+8``; [Apply Rle_compatibility; Left; Sup0 | Ring]. Rewrite <- (Rplus_sym ``12``); Pattern 1 ``12``; Rewrite <- Rplus_Or; Apply Rle_compatibility. Apply ge0_plus_ge0_is_ge0. Repeat Apply Rmult_le_pos. Left; Sup0. Left; Sup0. Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. Apply Rmult_le_pos. Left; Sup0. Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. Apply INR_fact_neq_0. Apply INR_fact_neq_0. Simpl; Ring. Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Assert H4 := (cv_speed_pow_fact a0); Unfold Un; Unfold Un_cv in H4; Unfold R_dist in H4; Unfold Un_cv; Unfold R_dist; Intros; Elim (H4 eps H5); Intros N H6; Exists N; Intros. Apply H6; Unfold ge; Apply le_trans with (mult (2) (S N)). Apply le_trans with (mult (2) N). Apply le_n_2n. Apply mult_le; Apply le_n_Sn. Apply mult_le; Apply le_n_S; Assumption. Assert X := (exist_cos (Rsqr a0)); Elim X; Intros. Cut ``x==(cos a0)``. Intro; Rewrite H4 in p; Unfold cos_in in p; Unfold infinit_sum in p; Unfold R_dist in p; Unfold Un_cv; Unfold R_dist; Intros. Elim (p ? H5); Intros N H6. Exists N; Intros. Replace (sum_f_R0 (tg_alt Un) n1) with (Rminus R1 (sum_f_R0 [i:nat]``(cos_n i)*(pow (Rsqr a0) i)`` (S n1))). Unfold Rminus; Rewrite Ropp_distr1; Rewrite Ropp_Ropp; Repeat Rewrite Rplus_assoc; Rewrite (Rplus_sym R1); Rewrite (Rplus_sym ``-1``); Repeat Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr1; Rewrite Ropp_Ropp; Unfold Rminus in H6; Apply H6. Unfold ge; Apply le_trans with n1. Exact H7. Apply le_n_Sn. Rewrite (decomp_sum [i:nat]``(cos_n i)*(pow (Rsqr a0) i)`` (S n1)). Replace (cos_n O) with R1. Simpl; Rewrite Rmult_1r; Unfold Rminus; Rewrite Ropp_distr1; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Ol; Replace (Ropp (sum_f_R0 [i:nat]``(cos_n (S i))*((Rsqr a0)*(pow (Rsqr a0) i))`` n1)) with (Rmult ``-1`` (sum_f_R0 [i:nat]``(cos_n (S i))*((Rsqr a0)*(pow (Rsqr a0) i))`` n1)); [Idtac | Ring]; Rewrite scal_sum; Apply sum_eq; Intros; Unfold cos_n Un tg_alt. Replace ``(pow (-1) (S i))`` with ``-(pow (-1) i)``. Replace ``(pow a0 (mult (S (S O)) (S i)))`` with ``(Rsqr a0)*(pow (Rsqr a0) i)``. Unfold Rdiv; Ring. Rewrite pow_Rsqr; Reflexivity. Simpl; Ring. Unfold cos_n; Unfold Rdiv; Simpl; Rewrite Rinv_R1; Rewrite Rmult_1r; Reflexivity. Apply lt_O_Sn. Unfold cos; Case (exist_cos (Rsqr a0)); Intros; Unfold cos_in in p; Unfold cos_in in c; EApply unicity_sum. Apply p. Apply c. Intros; Elim H3; Intros; Replace ``(cos a0)-1`` with ``-(1-(cos a0))``; [Idtac | Ring]. Split; Apply Rle_Ropp1; Assumption. Replace ``-(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n0)))`` with ``-1*(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n0)))``; [Rewrite scal_sum | Ring]. Apply sum_eq; Intros; Unfold cos_term Un tg_alt; Replace ``(pow (-1) (S i))`` with ``-1*(pow (-1) i)``. Unfold Rdiv; Ring. Reflexivity. Replace ``-(sum_f_R0 (tg_alt Un) (mult (S (S O)) n0))`` with ``-1*(sum_f_R0 (tg_alt Un) (mult (S (S O)) n0))``; [Rewrite scal_sum | Ring]; Apply sum_eq; Intros; Unfold cos_term Un tg_alt; Replace ``(pow (-1) (S i))`` with ``-1*(pow (-1) i)``. Unfold Rdiv; Ring. Reflexivity. Replace (mult (2) (plus n0 (1))) with (S (S (mult (2) n0))). Reflexivity. Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Rewrite plus_INR; Repeat Rewrite S_INR; Ring. Replace (plus (mult (2) n0) (1)) with (S (mult (2) n0)). Reflexivity. Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Intro; Elim H2; Intros; Split. Apply Rle_anti_compatibility with ``-1``. Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Rewrite (Rplus_sym ``-1``); Apply H3. Apply Rle_anti_compatibility with ``-1``. Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Rewrite (Rplus_sym ``-1``); Apply H4. Unfold cos_term; Simpl; Unfold Rdiv; Rewrite Rinv_R1; Ring. Replace (mult (2) (plus n0 (1))) with (S (S (mult (2) n0))). Apply lt_O_Sn. Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Rewrite plus_INR; Repeat Rewrite S_INR; Ring. Replace (plus (mult (2) n0) (1)) with (S (mult (2) n0)). Apply lt_O_Sn. Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Intros; Case (total_order_T R0 a); Intro. Elim s; Intro. Apply H; [Left; Assumption | Assumption]. Apply H; [Right; Assumption | Assumption]. Cut ``0< -a``. Intro; Cut (x:R;n:nat) (cos_approx x n)==(cos_approx ``-x`` n). Intro; Rewrite H3; Rewrite (H3 a (mult (S (S O)) (plus n (S O)))); Rewrite cos_sym; Apply H. Left; Assumption. Rewrite <- (Ropp_Ropp ``PI/2``); Apply Rle_Ropp1; Unfold Rdiv; Unfold Rdiv in H0; Rewrite <- Ropp_mul1; Exact H0. Intros; Unfold cos_approx; Apply sum_eq; Intros; Unfold cos_term; Do 2 Rewrite pow_Rsqr; Rewrite Rsqr_neg; Unfold Rdiv; Reflexivity. Apply Rgt_RO_Ropp; Assumption. Qed.