(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* cos_plus; Rewrite -> sin_PI; Rewrite -> cos_PI; Ring. Qed. (**********) Lemma sin_cos : (x:R) ``(sin x)==-(cos (PI/2+x))``. Intro x; Rewrite -> cos_plus; Rewrite -> sin_PI2; Rewrite -> cos_PI2; Ring. Qed. (**********) Lemma sin_plus : (x,y:R) ``(sin (x+y))==(sin x)*(cos y)+(cos x)*(sin y)``. Intros. Rewrite (sin_cos ``x+y``). Replace ``PI/2+(x+y)`` with ``(PI/2+x)+y``; [Rewrite cos_plus | Ring]. Rewrite (sin_cos ``PI/2+x``). Replace ``PI/2+(PI/2+x)`` with ``x+PI``. Rewrite neg_cos. Replace (cos ``PI/2+x``) with ``-(sin x)``. Ring. Rewrite sin_cos; Rewrite Ropp_Ropp; Reflexivity. Pattern 1 PI; Rewrite (double_var PI); Ring. Qed. Lemma sin_minus : (x,y:R) ``(sin (x-y))==(sin x)*(cos y)-(cos x)*(sin y)``. Intros; Unfold Rminus; Rewrite sin_plus. Rewrite <- cos_sym; Rewrite sin_antisym; Ring. Qed. (**********) Definition tan [x:R] : R := ``(sin x)/(cos x)``. Lemma tan_plus : (x,y:R) ~``(cos x)==0`` -> ~``(cos y)==0`` -> ~``(cos (x+y))==0`` -> ~``1-(tan x)*(tan y)==0`` -> ``(tan (x+y))==((tan x)+(tan y))/(1-(tan x)*(tan y))``. Intros; Unfold tan; Rewrite sin_plus; Rewrite cos_plus; Unfold Rdiv; Replace ``((cos x)*(cos y)-(sin x)*(sin y))`` with ``((cos x)*(cos y))*(1-(sin x)*/(cos x)*((sin y)*/(cos y)))``. Rewrite Rinv_Rmult. Repeat Rewrite <- Rmult_assoc; Replace ``((sin x)*(cos y)+(cos x)*(sin y))*/((cos x)*(cos y))`` with ``((sin x)*/(cos x)+(sin y)*/(cos y))``. Reflexivity. Rewrite Rmult_Rplus_distrl; Rewrite Rinv_Rmult. Repeat Rewrite Rmult_assoc; Repeat Rewrite (Rmult_sym ``(sin x)``); Repeat Rewrite <- Rmult_assoc. Repeat Rewrite Rinv_r_simpl_m; [Reflexivity | Assumption | Assumption]. Assumption. Assumption. Apply prod_neq_R0; Assumption. Assumption. Unfold Rminus; Rewrite Rmult_Rplus_distr; Rewrite Rmult_1r; Apply Rplus_plus_r; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``(sin x)``); Rewrite (Rmult_sym ``(cos y)``); Rewrite <- Ropp_mul3; Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. Rewrite Rmult_1l; Rewrite (Rmult_sym (sin x)); Rewrite <- Ropp_mul3; Repeat Rewrite Rmult_assoc; Apply Rmult_mult_r; Rewrite (Rmult_sym ``/(cos y)``); Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. Apply Rmult_1r. Assumption. Assumption. Qed. (*******************************************************) (* Some properties of cos, sin and tan *) (*******************************************************) Lemma sin2 : (x:R) ``(Rsqr (sin x))==1-(Rsqr (cos x))``. Intro x; Generalize (cos2 x); Intro H1; Rewrite -> H1. Unfold Rminus; Rewrite Ropp_distr1; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Ol; Symmetry; Apply Ropp_Ropp. Qed. Lemma sin_2a : (x:R) ``(sin (2*x))==2*(sin x)*(cos x)``. Intro x; Rewrite double; Rewrite sin_plus. Rewrite <- (Rmult_sym (sin x)); Symmetry; Rewrite Rmult_assoc; Apply double. Qed. Lemma cos_2a : (x:R) ``(cos (2*x))==(cos x)*(cos x)-(sin x)*(sin x)``. Intro x; Rewrite double; Apply cos_plus. Qed. Lemma cos_2a_cos : (x:R) ``(cos (2*x))==2*(cos x)*(cos x)-1``. Intro x; Rewrite double; Unfold Rminus; Rewrite Rmult_assoc; Rewrite cos_plus; Generalize (sin2_cos2 x); Rewrite double; Intro H1; Rewrite <- H1; SqRing. Qed. Lemma cos_2a_sin : (x:R) ``(cos (2*x))==1-2*(sin x)*(sin x)``. Intro x; Rewrite Rmult_assoc; Unfold Rminus; Repeat Rewrite double. Generalize (sin2_cos2 x); Intro H1; Rewrite <- H1; Rewrite cos_plus; SqRing. Qed. Lemma tan_2a : (x:R) ~``(cos x)==0`` -> ~``(cos (2*x))==0`` -> ~``1-(tan x)*(tan x)==0`` ->``(tan (2*x))==(2*(tan x))/(1-(tan x)*(tan x))``. Repeat Rewrite double; Intros; Repeat Rewrite double; Rewrite double in H0; Apply tan_plus; Assumption. Qed. Lemma sin_neg : (x:R) ``(sin (-x))==-(sin x)``. Apply sin_antisym. Qed. Lemma cos_neg : (x:R) ``(cos (-x))==(cos x)``. Intro; Symmetry; Apply cos_sym. Qed. Lemma tan_0 : ``(tan 0)==0``. Unfold tan; Rewrite -> sin_0; Rewrite -> cos_0. Unfold Rdiv; Apply Rmult_Ol. Qed. Lemma tan_neg : (x:R) ``(tan (-x))==-(tan x)``. Intros x; Unfold tan; Rewrite sin_neg; Rewrite cos_neg; Unfold Rdiv. Apply Ropp_mul1. Qed. Lemma tan_minus : (x,y:R) ~``(cos x)==0`` -> ~``(cos y)==0`` -> ~``(cos (x-y))==0`` -> ~``1+(tan x)*(tan y)==0`` -> ``(tan (x-y))==((tan x)-(tan y))/(1+(tan x)*(tan y))``. Intros; Unfold Rminus; Rewrite tan_plus. Rewrite tan_neg; Unfold Rminus; Rewrite <- Ropp_mul1; Rewrite Ropp_mul2; Reflexivity. Assumption. Rewrite cos_neg; Assumption. Assumption. Rewrite tan_neg; Unfold Rminus; Rewrite <- Ropp_mul1; Rewrite Ropp_mul2; Assumption. Qed. Lemma cos_3PI2 : ``(cos (3*(PI/2)))==0``. Replace ``3*(PI/2)`` with ``PI+(PI/2)``. Rewrite -> cos_plus; Rewrite -> sin_PI; Rewrite -> cos_PI2; Ring. Pattern 1 PI; Rewrite (double_var PI). Ring. Qed. Lemma sin_2PI : ``(sin (2*PI))==0``. Rewrite -> sin_2a; Rewrite -> sin_PI; Ring. Qed. Lemma cos_2PI : ``(cos (2*PI))==1``. Rewrite -> cos_2a; Rewrite -> sin_PI; Rewrite -> cos_PI; Ring. Qed. Lemma neg_sin : (x:R) ``(sin (x+PI))==-(sin x)``. Intro x; Rewrite -> sin_plus; Rewrite -> sin_PI; Rewrite -> cos_PI; Ring. Qed. Lemma sin_PI_x : (x:R) ``(sin (PI-x))==(sin x)``. Intro x; Rewrite -> sin_minus; Rewrite -> sin_PI; Rewrite -> cos_PI; Rewrite Rmult_Ol; Unfold Rminus; Rewrite Rplus_Ol; Rewrite Ropp_mul1; Rewrite Ropp_Ropp; Apply Rmult_1l. Qed. Lemma sin_period : (x:R)(k:nat) ``(sin (x+2*(INR k)*PI))==(sin x)``. Intros x k; Induction k. Cut ``x+2*(INR O)*PI==x``; [Intro; Rewrite H; Reflexivity | Ring]. Replace ``x+2*(INR (S k))*PI`` with ``(x+2*(INR k)*PI)+(2*PI)``; [Rewrite -> sin_plus; Rewrite -> sin_2PI; Rewrite -> cos_2PI; Ring; Apply Hreck | Rewrite -> S_INR; Ring]. Qed. Lemma cos_period : (x:R)(k:nat) ``(cos (x+2*(INR k)*PI))==(cos x)``. Intros x k; Induction k. Cut ``x+2*(INR O)*PI==x``; [Intro; Rewrite H; Reflexivity | Ring]. Replace ``x+2*(INR (S k))*PI`` with ``(x+2*(INR k)*PI)+(2*PI)``; [Rewrite -> cos_plus; Rewrite -> sin_2PI; Rewrite -> cos_2PI; Ring; Apply Hreck | Rewrite -> S_INR; Ring]. Qed. Lemma sin_shift : (x:R) ``(sin (PI/2-x))==(cos x)``. Intro x; Rewrite -> sin_minus; Rewrite -> sin_PI2; Rewrite -> cos_PI2; Ring. Qed. Lemma cos_shift : (x:R) ``(cos (PI/2-x))==(sin x)``. Intro x; Rewrite -> cos_minus; Rewrite -> sin_PI2; Rewrite -> cos_PI2; Ring. Qed. Lemma cos_sin : (x:R) ``(cos x)==(sin (PI/2+x))``. Intro x; Rewrite -> sin_plus; Rewrite -> sin_PI2; Rewrite -> cos_PI2; Ring. Qed. Lemma PI2_RGT_0 : ``0``a<=PI/2``->``0<(sin_lb a)``. Intros. Unfold sin_lb; Unfold sin_approx; Unfold sin_term. Pose Un := [i:nat]``(pow a (plus (mult (S (S O)) i) (S O)))/(INR (fact (plus (mult (S (S O)) i) (S O))))``. Replace (sum_f_R0 [i:nat] ``(pow ( -1) i)*(pow a (plus (mult (S (S O)) i) (S O)))/(INR (fact (plus (mult (S (S O)) i) (S O))))`` (S (S (S O)))) with (sum_f_R0 [i:nat]``(pow (-1) i)*(Un i)`` (3)); [Idtac | Apply sum_eq; Intros; Unfold Un; Reflexivity]. Cut (n:nat)``(Un (S n))<(Un n)``. Intro; Simpl. Repeat Rewrite Rmult_1l; Repeat Rewrite Rmult_1r; Replace ``-1*(Un (S O))`` with ``-(Un (S O))``; [Idtac | Ring]; Replace ``-1* -1*(Un (S (S O)))`` with ``(Un (S (S O)))``; [Idtac | Ring]; Replace ``-1*( -1* -1)*(Un (S (S (S O))))`` with ``-(Un (S (S (S O))))``; [Idtac | Ring]; Replace ``(Un O)+ -(Un (S O))+(Un (S (S O)))+ -(Un (S (S (S O))))`` with ``((Un O)-(Un (S O)))+((Un (S (S O)))-(Un (S (S (S O)))))``; [Idtac | Ring]. Apply gt0_plus_gt0_is_gt0. Unfold Rminus; Apply Rlt_anti_compatibility with (Un (S O)); Rewrite Rplus_Or; Rewrite (Rplus_sym (Un (S O))); Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Apply H1. Unfold Rminus; Apply Rlt_anti_compatibility with (Un (S (S (S O)))); Rewrite Rplus_Or; Rewrite (Rplus_sym (Un (S (S (S O))))); Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Apply H1. Intro; Unfold Un. Cut (plus (mult (2) (S n)) (S O)) = (plus (plus (mult (2) n) (S O)) (2)). Intro; Rewrite H1. Rewrite pow_add; Unfold Rdiv; Rewrite Rmult_assoc; Apply Rlt_monotony. Apply pow_lt; Assumption. Rewrite <- H1; Apply Rlt_monotony_contra with (INR (fact (plus (mult (S (S O)) n) (S O)))). Apply lt_INR_0; Apply neq_O_lt. Assert H2 := (fact_neq_0 (plus (mult (2) n) (1))). Red; Intro; Elim H2; Symmetry; Assumption. Rewrite <- Rinv_r_sym. Apply Rlt_monotony_contra with (INR (fact (plus (mult (S (S O)) (S n)) (S O)))). Apply lt_INR_0; Apply neq_O_lt. Assert H2 := (fact_neq_0 (plus (mult (2) (S n)) (1))). Red; Intro; Elim H2; Symmetry; Assumption. Rewrite (Rmult_sym (INR (fact (plus (mult (S (S O)) (S n)) (S O))))); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Do 2 Rewrite Rmult_1r; Apply Rle_lt_trans with ``(INR (fact (plus (mult (S (S O)) n) (S O))))*4``. Apply Rle_monotony. Replace R0 with (INR O); [Idtac | Reflexivity]; Apply le_INR; Apply le_O_n. Simpl; Rewrite Rmult_1r; Replace ``4`` with ``(Rsqr 2)``; [Idtac | SqRing]; Replace ``a*a`` with (Rsqr a); [Idtac | Reflexivity]; Apply Rsqr_incr_1. Apply Rle_trans with ``PI/2``; [Assumption | Unfold Rdiv; Apply Rle_monotony_contra with ``2``; [ Sup0 | Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m; [Replace ``2*2`` with ``4``; [Apply PI_4 | Ring] | DiscrR]]]. Left; Assumption. Left; Sup0. Rewrite H1; Replace (plus (plus (mult (S (S O)) n) (S O)) (S (S O))) with (S (S (plus (mult (S (S O)) n) (S O)))). Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR. Repeat Rewrite <- Rmult_assoc. Rewrite <- (Rmult_sym (INR (fact (plus (mult (S (S O)) n) (S O))))). Rewrite Rmult_assoc. Apply Rlt_monotony. Apply lt_INR_0; Apply neq_O_lt. Assert H2 := (fact_neq_0 (plus (mult (2) n) (1))). Red; Intro; Elim H2; Symmetry; Assumption. Do 2 Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Pose x := (INR n); Unfold INR. Replace ``(2*x+1+1+1)*(2*x+1+1)`` with ``4*x*x+10*x+6``; [Idtac | Ring]. Apply Rlt_anti_compatibility with ``-4``; Rewrite Rplus_Ropp_l; Replace ``-4+(4*x*x+10*x+6)`` with ``(4*x*x+10*x)+2``; [Idtac | Ring]. Apply ge0_plus_gt0_is_gt0. Cut ``0<=x``. Intro; Apply ge0_plus_ge0_is_ge0; Repeat Apply Rmult_le_pos; Assumption Orelse Left; Sup. Unfold x; Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. Sup0. Apply INR_eq; Do 2 Rewrite S_INR; Do 3 Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Apply INR_fact_neq_0. Apply INR_fact_neq_0. Apply INR_eq; Do 3 Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Qed. Lemma SIN : (a:R) ``0<=a`` -> ``a<=PI`` -> ``(sin_lb a)<=(sin a)<=(sin_ub a)``. Intros; Unfold sin_lb sin_ub; Apply (sin_bound a (S O) H H0). Qed. Lemma COS : (a:R) ``-PI/2<=a`` -> ``a<=PI/2`` -> ``(cos_lb a)<=(cos a)<=(cos_ub a)``. Intros; Unfold cos_lb cos_ub; Apply (cos_bound a (S O) H H0). Qed. (**********) Lemma _PI2_RLT_0 : ``-(PI/2)<0``. Rewrite <- Ropp_O; Apply Rlt_Ropp1; Apply PI2_RGT_0. Qed. Lemma PI4_RLT_PI2 : ``PI/4 ``x ``0<(sin x)``. Intros; Elim (SIN x (Rlt_le R0 x H) (Rlt_le x PI H0)); Intros H1 _; Case (total_order x ``PI/2``); Intro H2. Apply Rlt_le_trans with (sin_lb x). Apply sin_lb_gt_0; [Assumption | Left; Assumption]. Assumption. Elim H2; Intro H3. Rewrite H3; Rewrite sin_PI2; Apply Rlt_R0_R1. Rewrite <- sin_PI_x; Generalize (Rgt_Ropp x ``PI/2`` H3); Intro H4; Generalize (Rlt_compatibility PI (Ropp x) (Ropp ``PI/2``) H4). Replace ``PI+(-x)`` with ``PI-x``. Replace ``PI+ -(PI/2)`` with ``PI/2``. Intro H5; Generalize (Rlt_Ropp x PI H0); Intro H6; Change ``-PI < -x`` in H6; Generalize (Rlt_compatibility PI (Ropp PI) (Ropp x) H6). Rewrite Rplus_Ropp_r. Replace ``PI+ -x`` with ``PI-x``. Intro H7; Elim (SIN ``PI-x`` (Rlt_le R0 ``PI-x`` H7) (Rlt_le ``PI-x`` PI (Rlt_trans ``PI-x`` ``PI/2`` ``PI`` H5 PI2_Rlt_PI))); Intros H8 _; Generalize (sin_lb_gt_0 ``PI-x`` H7 (Rlt_le ``PI-x`` ``PI/2`` H5)); Intro H9; Apply (Rlt_le_trans ``0`` ``(sin_lb (PI-x))`` ``(sin (PI-x))`` H9 H8). Reflexivity. Pattern 2 PI; Rewrite double_var; Ring. Reflexivity. Qed. Theorem cos_gt_0 : (x:R) ``-(PI/2) ``x ``0<(cos x)``. Intros; Rewrite cos_sin; Generalize (Rlt_compatibility ``PI/2`` ``-(PI/2)`` x H). Rewrite Rplus_Ropp_r; Intro H1; Generalize (Rlt_compatibility ``PI/2`` x ``PI/2`` H0); Rewrite <- double_var; Intro H2; Apply (sin_gt_0 ``PI/2+x`` H1 H2). Qed. Lemma sin_ge_0 : (x:R) ``0<=x`` -> ``x<=PI`` -> ``0<=(sin x)``. Intros x H1 H2; Elim H1; Intro H3; [ Elim H2; Intro H4; [ Left ; Apply (sin_gt_0 x H3 H4) | Rewrite H4; Right; Symmetry; Apply sin_PI ] | Rewrite <- H3; Right; Symmetry; Apply sin_0]. Qed. Lemma cos_ge_0 : (x:R) ``-(PI/2)<=x`` -> ``x<=PI/2`` -> ``0<=(cos x)``. Intros x H1 H2; Elim H1; Intro H3; [ Elim H2; Intro H4; [ Left ; Apply (cos_gt_0 x H3 H4) | Rewrite H4; Right; Symmetry; Apply cos_PI2 ] | Rewrite <- H3; Rewrite cos_neg; Right; Symmetry; Apply cos_PI2 ]. Qed. Lemma sin_le_0 : (x:R) ``PI<=x`` -> ``x<=2*PI`` -> ``(sin x)<=0``. Intros x H1 H2; Apply Rle_sym2; Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp (sin x)); Apply Rle_Ropp; Rewrite <- neg_sin; Replace ``x+PI`` with ``(x-PI)+2*(INR (S O))*PI``; [Rewrite -> (sin_period (Rminus x PI) (S O)); Apply sin_ge_0; [Replace ``x-PI`` with ``x+(-PI)``; [Rewrite Rplus_sym; Replace ``0`` with ``(-PI)+PI``; [Apply Rle_compatibility; Assumption | Ring] | Ring] | Replace ``x-PI`` with ``x+(-PI)``; Rewrite Rplus_sym; [Pattern 2 PI; Replace ``PI`` with ``(-PI)+2*PI``; [Apply Rle_compatibility; Assumption | Ring] | Ring]] |Unfold INR; Ring]. Qed. Lemma cos_le_0 : (x:R) ``PI/2<=x``->``x<=3*(PI/2)``->``(cos x)<=0``. Intros x H1 H2; Apply Rle_sym2; Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp (cos x)); Apply Rle_Ropp; Rewrite <- neg_cos; Replace ``x+PI`` with ``(x-PI)+2*(INR (S O))*PI``. Rewrite cos_period; Apply cos_ge_0. Replace ``-(PI/2)`` with ``-PI+(PI/2)``. Unfold Rminus; Rewrite (Rplus_sym x); Apply Rle_compatibility; Assumption. Pattern 1 PI; Rewrite (double_var PI); Rewrite Ropp_distr1; Ring. Unfold Rminus; Rewrite Rplus_sym; Replace ``PI/2`` with ``(-PI)+3*(PI/2)``. Apply Rle_compatibility; Assumption. Pattern 1 PI; Rewrite (double_var PI); Rewrite Ropp_distr1; Ring. Unfold INR; Ring. Qed. Lemma sin_lt_0 : (x:R) ``PI ``x<2*PI`` -> ``(sin x)<0``. Intros x H1 H2; Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp (sin x)); Apply Rlt_Ropp; Rewrite <- neg_sin; Replace ``x+PI`` with ``(x-PI)+2*(INR (S O))*PI``; [Rewrite -> (sin_period (Rminus x PI) (S O)); Apply sin_gt_0; [Replace ``x-PI`` with ``x+(-PI)``; [Rewrite Rplus_sym; Replace ``0`` with ``(-PI)+PI``; [Apply Rlt_compatibility; Assumption | Ring] | Ring] | Replace ``x-PI`` with ``x+(-PI)``; Rewrite Rplus_sym; [Pattern 2 PI; Replace ``PI`` with ``(-PI)+2*PI``; [Apply Rlt_compatibility; Assumption | Ring] | Ring]] |Unfold INR; Ring]. Qed. Lemma sin_lt_0_var : (x:R) ``-PI ``x<0`` -> ``(sin x)<0``. Intros; Generalize (Rlt_compatibility ``2*PI`` ``-PI`` x H); Replace ``2*PI+(-PI)`` with ``PI``; [Intro H1; Rewrite Rplus_sym in H1; Generalize (Rlt_compatibility ``2*PI`` x ``0`` H0); Intro H2; Rewrite (Rplus_sym ``2*PI``) in H2; Rewrite <- (Rplus_sym R0) in H2; Rewrite Rplus_Ol in H2; Rewrite <- (sin_period x (1)); Unfold INR; Replace ``2*1*PI`` with ``2*PI``; [Apply (sin_lt_0 ``x+2*PI`` H1 H2) | Ring] | Ring]. Qed. Lemma cos_lt_0 : (x:R) ``PI/2 ``x<3*(PI/2)``-> ``(cos x)<0``. Intros x H1 H2; Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp (cos x)); Apply Rlt_Ropp; Rewrite <- neg_cos; Replace ``x+PI`` with ``(x-PI)+2*(INR (S O))*PI``. Rewrite cos_period; Apply cos_gt_0. Replace ``-(PI/2)`` with ``-PI+(PI/2)``. Unfold Rminus; Rewrite (Rplus_sym x); Apply Rlt_compatibility; Assumption. Pattern 1 PI; Rewrite (double_var PI); Rewrite Ropp_distr1; Ring. Unfold Rminus; Rewrite Rplus_sym; Replace ``PI/2`` with ``(-PI)+3*(PI/2)``. Apply Rlt_compatibility; Assumption. Pattern 1 PI; Rewrite (double_var PI); Rewrite Ropp_distr1; Ring. Unfold INR; Ring. Qed. Lemma tan_gt_0 : (x:R) ``0 ``x ``0<(tan x)``. Intros x H1 H2; Unfold tan; Generalize _PI2_RLT_0; Generalize (Rlt_trans R0 x ``PI/2`` H1 H2); Intros; Generalize (Rlt_trans ``-(PI/2)`` R0 x H0 H1); Intro H5; Generalize (Rlt_trans x ``PI/2`` PI H2 PI2_Rlt_PI); Intro H7; Unfold Rdiv; Apply Rmult_lt_pos. Apply sin_gt_0; Assumption. Apply Rlt_Rinv; Apply cos_gt_0; Assumption. Qed. Lemma tan_lt_0 : (x:R) ``-(PI/2)``x<0``->``(tan x)<0``. Intros x H1 H2; Unfold tan; Generalize (cos_gt_0 x H1 (Rlt_trans x ``0`` ``PI/2`` H2 PI2_RGT_0)); Intro H3; Rewrite <- Ropp_O; Replace ``(sin x)/(cos x)`` with ``- ((-(sin x))/(cos x))``. Rewrite <- sin_neg; Apply Rgt_Ropp; Change ``0<(sin (-x))/(cos x)``; Unfold Rdiv; Apply Rmult_lt_pos. Apply sin_gt_0. Rewrite <- Ropp_O; Apply Rgt_Ropp; Assumption. Apply Rlt_trans with ``PI/2``. Rewrite <- (Ropp_Ropp ``PI/2``); Apply Rgt_Ropp; Assumption. Apply PI2_Rlt_PI. Apply Rlt_Rinv; Assumption. Unfold Rdiv; Ring. Qed. Lemma cos_ge_0_3PI2 : (x:R) ``3*(PI/2)<=x``->``x<=2*PI``->``0<=(cos x)``. Intros; Rewrite <- cos_neg; Rewrite <- (cos_period ``-x`` (1)); Unfold INR; Replace ``-x+2*1*PI`` with ``2*PI-x``. Generalize (Rle_Ropp x ``2*PI`` H0); Intro H1; Generalize (Rle_sym2 ``-(2*PI)`` ``-x`` H1); Clear H1; Intro H1; Generalize (Rle_compatibility ``2*PI`` ``-(2*PI)`` ``-x`` H1). Rewrite Rplus_Ropp_r. Intro H2; Generalize (Rle_Ropp ``3*(PI/2)`` x H); Intro H3; Generalize (Rle_sym2 ``-x`` ``-(3*(PI/2))`` H3); Clear H3; Intro H3; Generalize (Rle_compatibility ``2*PI`` ``-x`` ``-(3*(PI/2))`` H3). Replace ``2*PI+ -(3*PI/2)`` with ``PI/2``. Intro H4; Apply (cos_ge_0 ``2*PI-x`` (Rlt_le ``-(PI/2)`` ``2*PI-x`` (Rlt_le_trans ``-(PI/2)`` ``0`` ``2*PI-x`` _PI2_RLT_0 H2)) H4). Rewrite double; Pattern 2 3 PI; Rewrite double_var; Ring. Ring. Qed. Lemma form1 : (p,q:R) ``(cos p)+(cos q)==2*(cos ((p-q)/2))*(cos ((p+q)/2))``. Intros p q; Pattern 1 p; Replace ``p`` with ``(p-q)/2+(p+q)/2``. Rewrite <- (cos_neg q); Replace``-q`` with ``(p-q)/2-(p+q)/2``. Rewrite cos_plus; Rewrite cos_minus; Ring. Pattern 3 q; Rewrite double_var; Unfold Rdiv; Ring. Pattern 3 p; Rewrite double_var; Unfold Rdiv; Ring. Qed. Lemma form2 : (p,q:R) ``(cos p)-(cos q)==-2*(sin ((p-q)/2))*(sin ((p+q)/2))``. Intros p q; Pattern 1 p; Replace ``p`` with ``(p-q)/2+(p+q)/2``. Rewrite <- (cos_neg q); Replace``-q`` with ``(p-q)/2-(p+q)/2``. Rewrite cos_plus; Rewrite cos_minus; Ring. Pattern 3 q; Rewrite double_var; Unfold Rdiv; Ring. Pattern 3 p; Rewrite double_var; Unfold Rdiv; Ring. Qed. Lemma form3 : (p,q:R) ``(sin p)+(sin q)==2*(cos ((p-q)/2))*(sin ((p+q)/2))``. Intros p q; Pattern 1 p; Replace ``p`` with ``(p-q)/2+(p+q)/2``. Pattern 3 q; Replace ``q`` with ``(p+q)/2-(p-q)/2``. Rewrite sin_plus; Rewrite sin_minus; Ring. Pattern 3 q; Rewrite double_var; Unfold Rdiv; Ring. Pattern 3 p; Rewrite double_var; Unfold Rdiv; Ring. Qed. Lemma form4 : (p,q:R) ``(sin p)-(sin q)==2*(cos ((p+q)/2))*(sin ((p-q)/2))``. Intros p q; Pattern 1 p; Replace ``p`` with ``(p-q)/2+(p+q)/2``. Pattern 3 q; Replace ``q`` with ``(p+q)/2-(p-q)/2``. Rewrite sin_plus; Rewrite sin_minus; Ring. Pattern 3 q; Rewrite double_var; Unfold Rdiv; Ring. Pattern 3 p; Rewrite double_var; Unfold Rdiv; Ring. Qed. Lemma sin_increasing_0 : (x,y:R) ``-(PI/2)<=x``->``x<=PI/2``->``-(PI/2)<=y``->``y<=PI/2``->``(sin x)<(sin y)``->``x``x<=PI/2``->``-(PI/2)<=y``->``y<=PI/2``->``x``(sin x)<(sin y)``. Intros; Generalize (Rlt_compatibility ``x`` ``x`` ``y`` H3); Intro H4; Generalize (Rplus_le ``-(PI/2)`` x ``-(PI/2)`` x H H); Replace ``-(PI/2)+ (-(PI/2))`` with ``-PI``. Assert Hyp : ``0<2``. Sup0. Intro H5; Generalize (Rle_lt_trans ``-PI`` ``x+x`` ``x+y`` H5 H4); Intro H6; Generalize (Rlt_monotony ``(Rinv 2)`` ``-PI`` ``x+y`` (Rlt_Rinv ``2`` Hyp) H6); Replace ``/2*(-PI)`` with ``-(PI/2)``. Replace ``/2*(x+y)`` with ``(x+y)/2``. Clear H4 H5 H6; Intro H4; Generalize (Rlt_compatibility ``y`` ``x`` ``y`` H3); Intro H5; Rewrite Rplus_sym in H5; Generalize (Rplus_le y ``PI/2`` y ``PI/2`` H2 H2). Rewrite <- double_var. Intro H6; Generalize (Rlt_le_trans ``x+y`` ``y+y`` PI H5 H6); Intro H7; Generalize (Rlt_monotony ``(Rinv 2)`` ``x+y`` PI (Rlt_Rinv ``2`` Hyp) H7); Replace ``/2*PI`` with ``PI/2``. Replace ``/2*(x+y)`` with ``(x+y)/2``. Clear H5 H6 H7; Intro H5; Generalize (Rle_Ropp ``-(PI/2)`` y H1); Rewrite Ropp_Ropp; Clear H1; Intro H1; Generalize (Rle_sym2 ``-y`` ``PI/2`` H1); Clear H1; Intro H1; Generalize (Rle_Ropp y ``PI/2`` H2); Clear H2; Intro H2; Generalize (Rle_sym2 ``-(PI/2)`` ``-y`` H2); Clear H2; Intro H2; Generalize (Rlt_compatibility ``-y`` x y H3); Replace ``-y+x`` with ``x-y``. Rewrite Rplus_Ropp_l. Intro H6; Generalize (Rlt_monotony ``(Rinv 2)`` ``x-y`` ``0`` (Rlt_Rinv ``2`` Hyp) H6); Rewrite Rmult_Or; Replace ``/2*(x-y)`` with ``(x-y)/2``. Clear H6; Intro H6; Generalize (Rplus_le ``-(PI/2)`` x ``-(PI/2)`` ``-y`` H H2); Replace ``-(PI/2)+ (-(PI/2))`` with ``-PI``. Replace `` x+ -y`` with ``x-y``. Intro H7; Generalize (Rle_monotony ``(Rinv 2)`` ``-PI`` ``x-y`` (Rlt_le ``0`` ``/2`` (Rlt_Rinv ``2`` Hyp)) H7); Replace ``/2*(-PI)`` with ``-(PI/2)``. Replace ``/2*(x-y)`` with ``(x-y)/2``. Clear H7; Intro H7; Clear H H0 H1 H2; Apply Rminus_lt; Rewrite form4; Generalize (cos_gt_0 ``(x+y)/2`` H4 H5); Intro H8; Generalize (Rmult_lt_pos ``2`` ``(cos ((x+y)/2))`` Hyp H8); Clear H8; Intro H8; Cut ``-PI< -(PI/2)``. Intro H9; Generalize (sin_lt_0_var ``(x-y)/2`` (Rlt_le_trans ``-PI`` ``-(PI/2)`` ``(x-y)/2`` H9 H7) H6); Intro H10; Generalize (Rlt_anti_monotony ``(sin ((x-y)/2))`` ``0`` ``2*(cos ((x+y)/2))`` H10 H8); Intro H11; Rewrite Rmult_Or in H11; Rewrite Rmult_sym; Assumption. Apply Rlt_Ropp; Apply PI2_Rlt_PI. Unfold Rdiv; Apply Rmult_sym. Unfold Rdiv; Rewrite <- Ropp_mul1; Apply Rmult_sym. Reflexivity. Pattern 1 PI; Rewrite double_var. Rewrite Ropp_distr1. Reflexivity. Unfold Rdiv; Apply Rmult_sym. Unfold Rminus; Apply Rplus_sym. Unfold Rdiv; Apply Rmult_sym. Unfold Rdiv; Apply Rmult_sym. Unfold Rdiv; Apply Rmult_sym. Unfold Rdiv. Rewrite <- Ropp_mul1. Apply Rmult_sym. Pattern 1 PI; Rewrite double_var. Rewrite Ropp_distr1. Reflexivity. Qed. Lemma sin_decreasing_0 : (x,y:R) ``x<=3*(PI/2)``-> ``PI/2<=x`` -> ``y<=3*(PI/2)``-> ``PI/2<=y`` -> ``(sin x)<(sin y)`` -> ``y ``PI/2<=x`` -> ``y<=3*(PI/2)``-> ``PI/2<=y`` -> ``x ``(sin y)<(sin x)``. Intros; Rewrite <- (sin_PI_x x); Rewrite <- (sin_PI_x y); Generalize (Rle_compatibility ``-PI`` x ``3*(PI/2)`` H); Generalize (Rle_compatibility ``-PI`` ``PI/2`` x H0); Generalize (Rle_compatibility ``-PI`` y ``3*(PI/2)`` H1); Generalize (Rle_compatibility ``-PI`` ``PI/2`` y H2); Generalize (Rlt_compatibility ``-PI`` x y H3); Replace ``-PI+PI/2`` with ``-(PI/2)``. Replace ``-PI+y`` with ``y-PI``. Replace ``-PI+3*(PI/2)`` with ``PI/2``. Replace ``-PI+x`` with ``x-PI``. Intros; Apply Ropp_Rlt; Repeat Rewrite <- sin_neg; Replace ``-(PI-x)`` with ``x-PI``. Replace ``-(PI-y)`` with ``y-PI``. Apply (sin_increasing_1 ``x-PI`` ``y-PI`` H7 H8 H5 H6 H4). Unfold Rminus; Rewrite Ropp_distr1. Rewrite Ropp_Ropp. Apply Rplus_sym. Unfold Rminus; Rewrite Ropp_distr1. Rewrite Ropp_Ropp. Apply Rplus_sym. Unfold Rminus; Apply Rplus_sym. Pattern 2 PI; Rewrite double_var; Ring. Unfold Rminus; Apply Rplus_sym. Pattern 2 PI; Rewrite double_var; Ring. Qed. Lemma cos_increasing_0 : (x,y:R) ``PI<=x`` -> ``x<=2*PI`` ->``PI<=y`` -> ``y<=2*PI`` -> ``(cos x)<(cos y)`` -> ``x ``x<=2*PI`` ->``PI<=y`` -> ``y<=2*PI`` -> ``x ``(cos x)<(cos y)``. Intros x y H1 H2 H3 H4 H5; Generalize (Rle_compatibility ``-3*(PI/2)`` PI x H1); Generalize (Rle_compatibility ``-3*(PI/2)`` x ``2*PI`` H2); Generalize (Rle_compatibility ``-3*(PI/2)`` PI y H3); Generalize (Rle_compatibility ``-3*(PI/2)`` y ``2*PI`` H4); Generalize (Rlt_compatibility ``-3*(PI/2)`` x y H5); Rewrite <- (cos_neg x); Rewrite <- (cos_neg y); Rewrite <- (cos_period ``-x`` (1)); Rewrite <- (cos_period ``-y`` (1)); Unfold INR; Replace ``-3*(PI/2)+x`` with ``x-3*(PI/2)``. Replace ``-3*(PI/2)+y`` with ``y-3*(PI/2)``. Replace ``-3*(PI/2)+PI`` with ``-(PI/2)``. Replace ``-3*(PI/2)+2*PI`` with ``PI/2``. Clear H1 H2 H3 H4 H5; Intros H1 H2 H3 H4 H5; Replace ``-x+2*1*PI`` with ``(PI/2)-(x-3*(PI/2))``. Replace ``-y+2*1*PI`` with ``(PI/2)-(y-3*(PI/2))``. Repeat Rewrite cos_shift; Apply (sin_increasing_1 ``x-3*(PI/2)`` ``y-3*(PI/2)`` H5 H4 H3 H2 H1). Rewrite Rmult_1r. Rewrite (double PI); Pattern 3 4 PI; Rewrite double_var. Ring. Rewrite Rmult_1r. Rewrite (double PI); Pattern 3 4 PI; Rewrite double_var. Ring. Rewrite (double PI); Pattern 3 4 PI; Rewrite double_var. Ring. Pattern 3 PI; Rewrite double_var; Ring. Unfold Rminus. Rewrite <- Ropp_mul1. Apply Rplus_sym. Unfold Rminus. Rewrite <- Ropp_mul1. Apply Rplus_sym. Qed. Lemma cos_decreasing_0 : (x,y:R) ``0<=x``->``x<=PI``->``0<=y``->``y<=PI``->``(cos x)<(cos y)``->``y``x<=PI``->``0<=y``->``y<=PI``->``x``(cos y)<(cos x)``. Intros; Apply Ropp_Rlt; Repeat Rewrite <- neg_cos; Rewrite (Rplus_sym x); Rewrite (Rplus_sym y); Generalize (Rle_compatibility PI ``0`` x H); Generalize (Rle_compatibility PI x PI H0); Generalize (Rle_compatibility PI ``0`` y H1); Generalize (Rle_compatibility PI y PI H2); Rewrite Rplus_Or. Rewrite <- double. Generalize (Rlt_compatibility PI x y H3); Clear H H0 H1 H2 H3; Intros; Apply (cos_increasing_1 ``PI+x`` ``PI+y`` H3 H2 H1 H0 H). Qed. Lemma tan_diff : (x,y:R) ~``(cos x)==0``->~``(cos y)==0``->``(tan x)-(tan y)==(sin (x-y))/((cos x)*(cos y))``. Intros; Unfold tan;Rewrite sin_minus. Unfold Rdiv. Unfold Rminus. Rewrite Rmult_Rplus_distrl. Rewrite Rinv_Rmult. Repeat Rewrite (Rmult_sym (sin x)). Repeat Rewrite Rmult_assoc. Rewrite (Rmult_sym (cos y)). Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Rewrite (Rmult_sym (sin x)). Apply Rplus_plus_r. Rewrite <- Ropp_mul1. Rewrite <- Ropp_mul3. Rewrite (Rmult_sym ``/(cos x)``). Repeat Rewrite Rmult_assoc. Rewrite (Rmult_sym (cos x)). Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Reflexivity. Assumption. Assumption. Assumption. Assumption. Qed. Lemma tan_increasing_0 : (x,y:R) ``-(PI/4)<=x``->``x<=PI/4`` ->``-(PI/4)<=y``->``y<=PI/4``->``(tan x)<(tan y)``->``x sin_0 in H9; Elim (Rlt_antirefl ``0`` H9). Apply Rminus_lt; Assumption. Pattern 1 PI; Rewrite double_var. Unfold Rdiv. Rewrite Rmult_Rplus_distrl. Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_Rmult. Rewrite Ropp_distr1. Replace ``2*2`` with ``4``. Reflexivity. Ring. DiscrR. DiscrR. Pattern 1 PI; Rewrite double_var. Unfold Rdiv. Rewrite Rmult_Rplus_distrl. Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_Rmult. Replace ``2*2`` with ``4``. Reflexivity. Ring. DiscrR. DiscrR. Reflexivity. Case (case_Rabsolu ``(sin (x-y))``); Intro H9. Assumption. Generalize (Rle_sym2 ``0`` ``(sin (x-y))`` H9); Clear H9; Intro H9; Generalize (Rlt_Rinv (cos x) HP1); Intro H10; Generalize (Rlt_Rinv (cos y) HP2); Intro H11; Generalize (Rmult_lt_pos (Rinv (cos x)) (Rinv (cos y)) H10 H11); Replace ``/(cos x)*/(cos y)`` with ``/((cos x)*(cos y))``. Intro H12; Generalize (Rmult_le_pos ``(sin (x-y))`` ``/((cos x)*(cos y))`` H9 (Rlt_le ``0`` ``/((cos x)*(cos y))`` H12)); Intro H13; Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` ``(sin (x-y))*/((cos x)*(cos y))`` ``0`` H13 H3)). Rewrite Rinv_Rmult. Reflexivity. Assumption. Assumption. Qed. Lemma tan_increasing_1 : (x,y:R) ``-(PI/4)<=x``->``x<=PI/4`` ->``-(PI/4)<=y``->``y<=PI/4``->``x``(tan x)<(tan y)``. Intros; Apply Rminus_lt; Generalize PI4_RLT_PI2; Intro H4; Generalize (Rlt_Ropp ``PI/4`` ``PI/2`` H4); Intro H5; Change ``-(PI/2)< -(PI/4)`` in H5; Generalize (cos_gt_0 x (Rlt_le_trans ``-(PI/2)`` ``-(PI/4)`` x H5 H) (Rle_lt_trans x ``PI/4`` ``PI/2`` H0 H4)); Intro HP1; Generalize (cos_gt_0 y (Rlt_le_trans ``-(PI/2)`` ``-(PI/4)`` y H5 H1) (Rle_lt_trans y ``PI/4`` ``PI/2`` H2 H4)); Intro HP2; Generalize (not_sym ``0`` (cos x) (Rlt_not_eq ``0`` (cos x) (cos_gt_0 x (Rlt_le_trans ``-(PI/2)`` ``-(PI/4)`` x H5 H) (Rle_lt_trans x ``PI/4`` ``PI/2`` H0 H4)))); Intro H6; Generalize (not_sym ``0`` (cos y) (Rlt_not_eq ``0`` (cos y) (cos_gt_0 y (Rlt_le_trans ``-(PI/2)`` ``-(PI/4)`` y H5 H1) (Rle_lt_trans y ``PI/4`` ``PI/2`` H2 H4)))); Intro H7; Rewrite (tan_diff x y H6 H7); Generalize (Rlt_Rinv (cos x) HP1); Intro H10; Generalize (Rlt_Rinv (cos y) HP2); Intro H11; Generalize (Rmult_lt_pos (Rinv (cos x)) (Rinv (cos y)) H10 H11); Replace ``/(cos x)*/(cos y)`` with ``/((cos x)*(cos y))``. Clear H10 H11; Intro H8; Generalize (Rle_Ropp y ``PI/4`` H2); Intro H11; Generalize (Rle_sym2 ``-(PI/4)`` ``-y`` H11); Clear H11; Intro H11; Generalize (Rplus_le ``-(PI/4)`` x ``-(PI/4)`` ``-y`` H H11); Replace ``x+ -y`` with ``x-y``. Replace ``-(PI/4)+ -(PI/4)`` with ``-(PI/2)``. Clear H11; Intro H9; Generalize (Rlt_minus x y H3); Clear H3; Intro H3; Clear H H0 H1 H2 H4 H5 HP1 HP2; Generalize PI2_Rlt_PI; Intro H1; Generalize (Rlt_Ropp ``PI/2`` PI H1); Clear H1; Intro H1; Generalize (sin_lt_0_var ``x-y`` (Rlt_le_trans ``-PI`` ``-(PI/2)`` ``x-y`` H1 H9) H3); Intro H2; Generalize (Rlt_anti_monotony ``(sin (x-y))`` ``0`` ``/((cos x)*(cos y))`` H2 H8); Rewrite Rmult_Or; Intro H4; Assumption. Pattern 1 PI; Rewrite double_var. Unfold Rdiv. Rewrite Rmult_Rplus_distrl. Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_Rmult. Replace ``2*2`` with ``4``. Rewrite Ropp_distr1. Reflexivity. Ring. DiscrR. DiscrR. Reflexivity. Apply Rinv_Rmult; Assumption. Qed. Lemma sin_incr_0 : (x,y:R) ``-(PI/2)<=x``->``x<=PI/2``->``-(PI/2)<=y``->``y<=PI/2``->``(sin x)<=(sin y)``->``x<=y``. Intros; Case (total_order (sin x) (sin y)); Intro H4; [Left; Apply (sin_increasing_0 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order x y); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (sin_increasing_1 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl (sin y) H8)]] | Elim (Rlt_antirefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5))]]. Qed. Lemma sin_incr_1 : (x,y:R) ``-(PI/2)<=x``->``x<=PI/2``->``-(PI/2)<=y``->``y<=PI/2``->``x<=y``->``(sin x)<=(sin y)``. Intros; Case (total_order x y); Intro H4; [Left; Apply (sin_increasing_1 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order (sin x) (sin y)); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (sin_increasing_0 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl y H8)]] | Elim (Rlt_antirefl x (Rle_lt_trans x y x H3 H5))]]. Qed. Lemma sin_decr_0 : (x,y:R) ``x<=3*(PI/2)``->``PI/2<=x``->``y<=3*(PI/2)``->``PI/2<=y``-> ``(sin x)<=(sin y)`` -> ``y<=x``. Intros; Case (total_order (sin x) (sin y)); Intro H4; [Left; Apply (sin_decreasing_0 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order x y); Intro H6; [Generalize (sin_decreasing_1 x y H H0 H1 H2 H6); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl (sin y) H8) | Elim H6; Intro H7; [Right; Symmetry; Assumption | Left; Assumption]] | Elim (Rlt_antirefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5))]]. Qed. Lemma sin_decr_1 : (x,y:R) ``x<=3*(PI/2)``-> ``PI/2<=x`` -> ``y<=3*(PI/2)``-> ``PI/2<=y`` -> ``x<=y`` -> ``(sin y)<=(sin x)``. Intros; Case (total_order x y); Intro H4; [Left; Apply (sin_decreasing_1 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order (sin x) (sin y)); Intro H6; [Generalize (sin_decreasing_0 x y H H0 H1 H2 H6); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl y H8) | Elim H6; Intro H7; [Right; Symmetry; Assumption | Left; Assumption]] | Elim (Rlt_antirefl x (Rle_lt_trans x y x H3 H5))]]. Qed. Lemma cos_incr_0 : (x,y:R) ``PI<=x`` -> ``x<=2*PI`` ->``PI<=y`` -> ``y<=2*PI`` -> ``(cos x)<=(cos y)`` -> ``x<=y``. Intros; Case (total_order (cos x) (cos y)); Intro H4; [Left; Apply (cos_increasing_0 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order x y); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (cos_increasing_1 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl (cos y) H8)]] | Elim (Rlt_antirefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5))]]. Qed. Lemma cos_incr_1 : (x,y:R) ``PI<=x`` -> ``x<=2*PI`` ->``PI<=y`` -> ``y<=2*PI`` -> ``x<=y`` -> ``(cos x)<=(cos y)``. Intros; Case (total_order x y); Intro H4; [Left; Apply (cos_increasing_1 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order (cos x) (cos y)); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (cos_increasing_0 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl y H8)]] | Elim (Rlt_antirefl x (Rle_lt_trans x y x H3 H5))]]. Qed. Lemma cos_decr_0 : (x,y:R) ``0<=x``->``x<=PI``->``0<=y``->``y<=PI``->``(cos x)<=(cos y)`` -> ``y<=x``. Intros; Case (total_order (cos x) (cos y)); Intro H4; [Left; Apply (cos_decreasing_0 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order x y); Intro H6; [Generalize (cos_decreasing_1 x y H H0 H1 H2 H6); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl (cos y) H8) | Elim H6; Intro H7; [Right; Symmetry; Assumption | Left; Assumption]] | Elim (Rlt_antirefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5))]]. Qed. Lemma cos_decr_1 : (x,y:R) ``0<=x``->``x<=PI``->``0<=y``->``y<=PI``->``x<=y``->``(cos y)<=(cos x)``. Intros; Case (total_order x y); Intro H4; [Left; Apply (cos_decreasing_1 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order (cos x) (cos y)); Intro H6; [Generalize (cos_decreasing_0 x y H H0 H1 H2 H6); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl y H8) | Elim H6; Intro H7; [Right; Symmetry; Assumption | Left; Assumption]] | Elim (Rlt_antirefl x (Rle_lt_trans x y x H3 H5))]]. Qed. Lemma tan_incr_0 : (x,y:R) ``-(PI/4)<=x``->``x<=PI/4`` ->``-(PI/4)<=y``->``y<=PI/4``->``(tan x)<=(tan y)``->``x<=y``. Intros; Case (total_order (tan x) (tan y)); Intro H4; [Left; Apply (tan_increasing_0 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order x y); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (tan_increasing_1 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl (tan y) H8)]] | Elim (Rlt_antirefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5))]]. Qed. Lemma tan_incr_1 : (x,y:R) ``-(PI/4)<=x``->``x<=PI/4`` ->``-(PI/4)<=y``->``y<=PI/4``->``x<=y``->``(tan x)<=(tan y)``. Intros; Case (total_order x y); Intro H4; [Left; Apply (tan_increasing_1 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order (tan x) (tan y)); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (tan_increasing_0 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl y H8)]] | Elim (Rlt_antirefl x (Rle_lt_trans x y x H3 H5))]]. Qed. (**********) Lemma sin_eq_0_1 : (x:R) (EXT k:Z | x==(Rmult (IZR k) PI)) -> (sin x)==R0. Intros. Elim H; Intros. Apply (Zcase_sign x0). Intro. Rewrite H1 in H0. Simpl in H0. Rewrite H0; Rewrite Rmult_Ol; Apply sin_0. Intro. Cut `0<=x0`. Intro. Elim (IZN x0 H2); Intros. Rewrite H3 in H0. Rewrite <- INR_IZR_INZ in H0. Rewrite H0. Elim (even_odd_cor x1); Intros. Elim H4; Intro. Rewrite H5. Rewrite mult_INR. Simpl. Rewrite <- (Rplus_Ol ``2*(INR x2)*PI``). Rewrite sin_period. Apply sin_0. Rewrite H5. Rewrite S_INR; Rewrite mult_INR. Simpl. Rewrite Rmult_Rplus_distrl. Rewrite Rmult_1l; Rewrite sin_plus. Rewrite sin_PI. Rewrite Rmult_Or. Rewrite <- (Rplus_Ol ``2*(INR x2)*PI``). Rewrite sin_period. Rewrite sin_0; Ring. Apply le_IZR. Left; Apply IZR_lt. Assert H2 := Zgt_iff_lt. Elim (H2 x0 `0`); Intros. Apply H3; Assumption. Intro. Rewrite H0. Replace ``(sin ((IZR x0)*PI))`` with ``-(sin (-(IZR x0)*PI))``. Cut `0<=-x0`. Intro. Rewrite <- Ropp_Ropp_IZR. Elim (IZN `-x0` H2); Intros. Rewrite H3. Rewrite <- INR_IZR_INZ. Elim (even_odd_cor x1); Intros. Elim H4; Intro. Rewrite H5. Rewrite mult_INR. Simpl. Rewrite <- (Rplus_Ol ``2*(INR x2)*PI``). Rewrite sin_period. Rewrite sin_0; Ring. Rewrite H5. Rewrite S_INR; Rewrite mult_INR. Simpl. Rewrite Rmult_Rplus_distrl. Rewrite Rmult_1l; Rewrite sin_plus. Rewrite sin_PI. Rewrite Rmult_Or. Rewrite <- (Rplus_Ol ``2*(INR x2)*PI``). Rewrite sin_period. Rewrite sin_0; Ring. Apply le_IZR. Apply Rle_anti_compatibility with ``(IZR x0)``. Rewrite Rplus_Or. Rewrite Ropp_Ropp_IZR. Rewrite Rplus_Ropp_r. Left; Replace R0 with (IZR `0`); [Apply IZR_lt | Reflexivity]. Assumption. Rewrite <- sin_neg. Rewrite Ropp_mul1. Rewrite Ropp_Ropp. Reflexivity. Qed. Lemma sin_eq_0_0 : (x:R) (sin x)==R0 -> (EXT k:Z | x==(Rmult (IZR k) PI)). Intros. Assert H0 := (euclidian_division x PI PI_neq0). Elim H0; Intros q H1. Elim H1; Intros r H2. Exists q. Cut r==R0. Intro. Elim H2; Intros H4 _; Rewrite H4; Rewrite H3. Apply Rplus_Or. Elim H2; Intros. Rewrite H3 in H. Rewrite sin_plus in H. Cut ``(sin ((IZR q)*PI))==0``. Intro. Rewrite H5 in H. Rewrite Rmult_Ol in H. Rewrite Rplus_Ol in H. Assert H6 := (without_div_Od ? ? H). Elim H6; Intro. Assert H8 := (sin2_cos2 ``(IZR q)*PI``). Rewrite H5 in H8; Rewrite H7 in H8. Rewrite Rsqr_O in H8. Rewrite Rplus_Or in H8. Elim R1_neq_R0; Symmetry; Assumption. Cut r==R0\/``0 (EXT k : Z | ``x==(IZR k)*PI+PI/2``). Intros x H; Rewrite -> cos_sin in H; Generalize (sin_eq_0_0 (Rplus (Rdiv PI (INR (2))) x) H); Intro H2; Elim H2; Intros x0 H3; Exists (Zminus x0 (inject_nat (S O))); Rewrite <- Z_R_minus; Ring; Rewrite Rmult_sym; Rewrite <- H3; Unfold INR. Rewrite (double_var ``-PI``); Unfold Rdiv; Ring. Qed. Lemma cos_eq_0_1 : (x:R) (EXT k : Z | ``x==(IZR k)*PI+PI/2``) -> ``(cos x)==0``. Intros x H1; Rewrite cos_sin; Elim H1; Intros x0 H2; Rewrite H2; Replace ``PI/2+((IZR x0)*PI+PI/2)`` with ``(IZR x0)*PI+PI``. Rewrite neg_sin; Rewrite <- Ropp_O. Apply eq_Ropp; Apply sin_eq_0_1; Exists x0; Reflexivity. Pattern 2 PI; Rewrite (double_var PI); Ring. Qed. Lemma sin_eq_O_2PI_0 : (x:R) ``0<=x`` -> ``x<=2*PI`` -> ``(sin x)==0`` -> ``x==0``\/``x==PI``\/``x==2*PI``. Intros; Generalize (sin_eq_0_0 x H1); Intro. Elim H2; Intros k0 H3. Case (total_order PI x); Intro. Rewrite H3 in H4; Rewrite H3 in H0. Right; Right. Generalize (Rlt_monotony_r ``/PI`` ``PI`` ``(IZR k0)*PI`` (Rlt_Rinv ``PI`` PI_RGT_0) H4); Rewrite Rmult_assoc; Repeat Rewrite <- Rinv_r_sym. Rewrite Rmult_1r; Intro; Generalize (Rle_monotony_r ``/PI`` ``(IZR k0)*PI`` ``2*PI`` (Rlt_le ``0`` ``/PI`` (Rlt_Rinv ``PI`` PI_RGT_0)) H0); Repeat Rewrite Rmult_assoc; Repeat Rewrite <- Rinv_r_sym. Repeat Rewrite Rmult_1r; Intro; Generalize (Rlt_compatibility (IZR `-2`) ``1`` (IZR k0) H5); Rewrite <- plus_IZR. Replace ``(IZR (NEG (xO xH)))+1`` with ``-1``. Intro; Generalize (Rle_compatibility (IZR `-2`) (IZR k0) ``2`` H6); Rewrite <- plus_IZR. Replace ``(IZR (NEG (xO xH)))+2`` with ``0``. Intro; Cut ``-1 < (IZR (Zplus (NEG (xO xH)) k0)) < 1``. Intro; Generalize (one_IZR_lt1 (Zplus (NEG (xO xH)) k0) H9); Intro. Cut k0=`2`. Intro; Rewrite H11 in H3; Rewrite H3; Simpl. Reflexivity. Rewrite <- (Zplus_inverse_l `2`) in H10; Generalize (Zsimpl_plus_l `-2` k0 `2` H10); Intro; Assumption. Split. Assumption. Apply Rle_lt_trans with ``0``. Assumption. Apply Rlt_R0_R1. Simpl; Ring. Simpl; Ring. Apply PI_neq0. Apply PI_neq0. Elim H4; Intro. Right; Left. Symmetry; Assumption. Left. Rewrite H3 in H5; Rewrite H3 in H; Generalize (Rlt_monotony_r ``/PI`` ``(IZR k0)*PI`` PI (Rlt_Rinv ``PI`` PI_RGT_0) H5); Rewrite Rmult_assoc; Repeat Rewrite <- Rinv_r_sym. Rewrite Rmult_1r; Intro; Generalize (Rle_monotony_r ``/PI`` ``0`` ``(IZR k0)*PI`` (Rlt_le ``0`` ``/PI`` (Rlt_Rinv ``PI`` PI_RGT_0)) H); Repeat Rewrite Rmult_assoc; Repeat Rewrite <- Rinv_r_sym. Rewrite Rmult_1r; Rewrite Rmult_Ol; Intro. Cut ``-1 < (IZR (k0)) < 1``. Intro; Generalize (one_IZR_lt1 k0 H8); Intro; Rewrite H9 in H3; Rewrite H3; Simpl; Apply Rmult_Ol. Split. Apply Rlt_le_trans with ``0``. Rewrite <- Ropp_O; Apply Rgt_Ropp; Apply Rlt_R0_R1. Assumption. Assumption. Apply PI_neq0. Apply PI_neq0. Qed. Lemma sin_eq_O_2PI_1 : (x:R) ``0<=x`` -> ``x<=2*PI`` -> ``x==0``\/``x==PI``\/``x==2*PI`` -> ``(sin x)==0``. Intros x H1 H2 H3; Elim H3; Intro H4; [ Rewrite H4; Rewrite -> sin_0; Reflexivity | Elim H4; Intro H5; [Rewrite H5; Rewrite -> sin_PI; Reflexivity | Rewrite H5; Rewrite -> sin_2PI; Reflexivity]]. Qed. Lemma cos_eq_0_2PI_0 : (x:R) ``R0<=x`` -> ``x<=2*PI`` -> ``(cos x)==0`` -> ``x==(PI/2)``\/``x==3*(PI/2)``. Intros; Case (total_order x ``3*(PI/2)``); Intro. Rewrite cos_sin in H1. Cut ``0<=PI/2+x``. Cut ``PI/2+x<=2*PI``. Intros; Generalize (sin_eq_O_2PI_0 ``PI/2+x`` H4 H3 H1); Intros. Decompose [or] H5. Generalize (Rle_compatibility ``PI/2`` ``0`` x H); Rewrite Rplus_Or; Rewrite H6; Intro. Elim (Rlt_antirefl ``0`` (Rlt_le_trans ``0`` ``PI/2`` ``0`` PI2_RGT_0 H7)). Left. Generalize (Rplus_plus_r ``-(PI/2)`` ``PI/2+x`` PI H7). Replace ``-(PI/2)+(PI/2+x)`` with x. Replace ``-(PI/2)+PI`` with ``PI/2``. Intro; Assumption. Pattern 3 PI; Rewrite (double_var PI); Ring. Ring. Right. Generalize (Rplus_plus_r ``-(PI/2)`` ``PI/2+x`` ``2*PI`` H7). Replace ``-(PI/2)+(PI/2+x)`` with x. Replace ``-(PI/2)+2*PI`` with ``3*(PI/2)``. Intro; Assumption. Rewrite double; Pattern 3 4 PI; Rewrite (double_var PI); Ring. Ring. Left; Replace ``2*PI`` with ``PI/2+3*(PI/2)``. Apply Rlt_compatibility; Assumption. Rewrite (double PI); Pattern 3 4 PI; Rewrite (double_var PI); Ring. Apply ge0_plus_ge0_is_ge0. Left; Unfold Rdiv; Apply Rmult_lt_pos. Apply PI_RGT_0. Apply Rlt_Rinv; Sup0. Assumption. Elim H2; Intro. Right; Assumption. Generalize (cos_eq_0_0 x H1); Intro; Elim H4; Intros k0 H5. Rewrite H5 in H3; Rewrite H5 in H0; Generalize (Rlt_compatibility ``-(PI/2)`` ``3*PI/2`` ``(IZR k0)*PI+PI/2`` H3); Generalize (Rle_compatibility ``-(PI/2)`` ``(IZR k0)*PI+PI/2`` ``2*PI`` H0). Replace ``-(PI/2)+3*PI/2`` with PI. Replace ``-(PI/2)+((IZR k0)*PI+PI/2)`` with ``(IZR k0)*PI``. Replace ``-(PI/2)+2*PI`` with ``3*(PI/2)``. Intros; Generalize (Rlt_monotony ``/PI`` ``PI`` ``(IZR k0)*PI`` (Rlt_Rinv PI PI_RGT_0) H7); Generalize (Rle_monotony ``/PI`` ``(IZR k0)*PI`` ``3*(PI/2)`` (Rlt_le ``0`` ``/PI`` (Rlt_Rinv PI PI_RGT_0)) H6). Replace ``/PI*((IZR k0)*PI)`` with (IZR k0). Replace ``/PI*(3*PI/2)`` with ``3*/2``. Rewrite <- Rinv_l_sym. Intros; Generalize (Rlt_compatibility (IZR `-2`) ``1`` (IZR k0) H9); Rewrite <- plus_IZR. Replace ``(IZR (NEG (xO xH)))+1`` with ``-1``. Intro; Generalize (Rle_compatibility (IZR `-2`) (IZR k0) ``3*/2`` H8); Rewrite <- plus_IZR. Replace ``(IZR (NEG (xO xH)))+2`` with ``0``. Intro; Cut `` -1 < (IZR (Zplus (NEG (xO xH)) k0)) < 1``. Intro; Generalize (one_IZR_lt1 (Zplus (NEG (xO xH)) k0) H12); Intro. Cut k0=`2`. Intro; Rewrite H14 in H8. Assert Hyp : ``0<2``. Sup0. Generalize (Rle_monotony ``2`` ``(IZR (POS (xO xH)))`` ``3*/2`` (Rlt_le ``0`` ``2`` Hyp) H8); Simpl. Replace ``2*2`` with ``4``. Replace ``2*(3*/2)`` with ``3``. Intro; Cut ``3<4``. Intro; Elim (Rlt_antirefl ``3`` (Rlt_le_trans ``3`` ``4`` ``3`` H16 H15)). Generalize (Rlt_compatibility ``3`` ``0`` ``1`` Rlt_R0_R1); Rewrite Rplus_Or. Replace ``3+1`` with ``4``. Intro; Assumption. Ring. Symmetry; Rewrite <- Rmult_assoc; Apply Rinv_r_simpl_m. DiscrR. Ring. Rewrite <- (Zplus_inverse_l `2`) in H13; Generalize (Zsimpl_plus_l `-2` k0 `2` H13); Intro; Assumption. Split. Assumption. Apply Rle_lt_trans with ``(IZR (NEG (xO xH)))+3*/2``. Assumption. Simpl; Replace ``-2+3*/2`` with ``-(1*/2)``. Apply Rlt_trans with ``0``. Rewrite <- Ropp_O; Apply Rlt_Ropp. Apply Rmult_lt_pos; [Apply Rlt_R0_R1 | Apply Rlt_Rinv; Sup0]. Apply Rlt_R0_R1. Rewrite Rmult_1l; Apply r_Rmult_mult with ``2``. Rewrite Ropp_mul3; Rewrite <- Rinv_r_sym. Rewrite Rmult_Rplus_distr; Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m. Ring. DiscrR. DiscrR. DiscrR. Simpl; Ring. Simpl; Ring. Apply PI_neq0. Unfold Rdiv; Pattern 1 ``3``; Rewrite (Rmult_sym ``3``); Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1l; Apply Rmult_sym. Apply PI_neq0. Symmetry; Rewrite (Rmult_sym ``/PI``); Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. Apply Rmult_1r. Apply PI_neq0. Rewrite double; Pattern 3 4 PI; Rewrite double_var; Ring. Ring. Pattern 1 PI; Rewrite double_var; Ring. Qed. Lemma cos_eq_0_2PI_1 : (x:R) ``0<=x`` -> ``x<=2*PI`` -> ``x==PI/2``\/``x==3*(PI/2)`` -> ``(cos x)==0``. Intros x H1 H2 H3; Elim H3; Intro H4; [ Rewrite H4; Rewrite -> cos_PI2; Reflexivity | Rewrite H4; Rewrite -> cos_3PI2; Reflexivity ]. Qed.