(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R. Axiom NRmult : R->R. V7only[ Grammar rnatural ident := nat_id [ prim:var($id) ] -> [$id] with rnegnumber : constr := neg_expr [ "-" rnumber ($c) ] -> [ (Ropp $c) ] with rnumber := with rformula : constr := form_expr [ rexpr($p) ] -> [ $p ] (* | form_eq [ rexpr($p) "==" rexpr($c) ] -> [ (eqT R $p $c) ] *) | form_eq [ rexpr($p) "==" rexpr($c) ] -> [ (eqT ? $p $c) ] | form_eq2 [ rexpr($p) "=" rexpr($c) ] -> [ (eqT ? $p $c) ] | form_le [ rexpr($p) "<=" rexpr($c) ] -> [ (Rle $p $c) ] | form_lt [ rexpr($p) "<" rexpr($c) ] -> [ (Rlt $p $c) ] | form_ge [ rexpr($p) ">=" rexpr($c) ] -> [ (Rge $p $c) ] | form_gt [ rexpr($p) ">" rexpr($c) ] -> [ (Rgt $p $c) ] (* | form_eq_eq [ rexpr($p) "==" rexpr($c) "==" rexpr($c1) ] -> [ (eqT R $p $c)/\(eqT R $c $c1) ] *) | form_eq_eq [ rexpr($p) "==" rexpr($c) "==" rexpr($c1) ] -> [ (eqT ? $p $c)/\(eqT ? $c $c1) ] | form_le_le [ rexpr($p) "<=" rexpr($c) "<=" rexpr($c1) ] -> [ (Rle $p $c)/\(Rle $c $c1) ] | form_le_lt [ rexpr($p) "<=" rexpr($c) "<" rexpr($c1) ] -> [ (Rle $p $c)/\(Rlt $c $c1) ] | form_lt_le [ rexpr($p) "<" rexpr($c) "<=" rexpr($c1) ] -> [ (Rlt $p $c)/\(Rle $c $c1) ] | form_lt_lt [ rexpr($p) "<" rexpr($c) "<" rexpr($c1) ] -> [ (Rlt $p $c)/\(Rlt $c $c1) ] | form_neq [ rexpr($p) "<>" rexpr($c) ] -> [ ~(eqT ? $p $c) ] with rexpr : constr := expr_plus [ rexpr($p) "+" rexpr($c) ] -> [ (Rplus $p $c) ] | expr_minus [ rexpr($p) "-" rexpr($c) ] -> [ (Rminus $p $c) ] | rexpr2 [ rexpr2($e) ] -> [ $e ] with rexpr2 : constr := expr_mult [ rexpr2($p) "*" rexpr2($c) ] -> [ (Rmult $p $c) ] | rexpr0 [ rexpr0($e) ] -> [ $e ] with rexpr0 : constr := expr_id [ constr:global($c) ] -> [ $c ] | expr_com [ "[" constr:constr($c) "]" ] -> [ $c ] | expr_appl [ "(" rapplication($a) ")" ] -> [ $a ] | expr_num [ rnumber($s) ] -> [ $s ] | expr_negnum [ "-" rnegnumber($n) ] -> [ $n ] | expr_div [ rexpr0($p) "/" rexpr0($c) ] -> [ (Rdiv $p $c) ] | expr_opp [ "-" rexpr0($c) ] -> [ (Ropp $c) ] | expr_inv [ "/" rexpr0($c) ] -> [ (Rinv $c) ] | expr_meta [ meta($m) ] -> [ $m ] with meta := | rimpl [ "?" ] -> [ ? ] | rmeta0 [ "?" "0" ] -> [ ?0 ] | rmeta1 [ "?" "1" ] -> [ ?1 ] | rmeta2 [ "?" "2" ] -> [ ?2 ] | rmeta3 [ "?" "3" ] -> [ ?3 ] | rmeta4 [ "?" "4" ] -> [ ?4 ] | rmeta5 [ "?" "5" ] -> [ ?5 ] with rapplication : constr := apply [ rapplication($p) rexpr($c1) ] -> [ ($p $c1) ] | pair [ rexpr($p) "," rexpr($c) ] -> [ ($p, $c) ] | appl0 [ rexpr($a) ] -> [ $a ]. Grammar constr constr0 := r_in_com [ "``" rnatural:rformula($c) "``" ] -> [ $c ]. Grammar constr atomic_pattern := r_in_pattern [ "``" rnatural:rnumber($c) "``" ] -> [ $c ]. (*i* pp **) Syntax constr level 0: Rle [ (Rle $n1 $n2) ] -> [[ "``" (REXPR $n1) [1 0] "<= " (REXPR $n2) "``"]] | Rlt [ (Rlt $n1 $n2) ] -> [[ "``" (REXPR $n1) [1 0] "< "(REXPR $n2) "``" ]] | Rge [ (Rge $n1 $n2) ] -> [[ "``" (REXPR $n1) [1 0] ">= "(REXPR $n2) "``" ]] | Rgt [ (Rgt $n1 $n2) ] -> [[ "``" (REXPR $n1) [1 0] "> "(REXPR $n2) "``" ]] | Req [ (eqT R $n1 $n2) ] -> [[ "``" (REXPR $n1) [1 0] "= "(REXPR $n2)"``"]] | Rneq [ ~(eqT R $n1 $n2) ] -> [[ "``" (REXPR $n1) [1 0] "<> "(REXPR $n2) "``"]] | Rle_Rle [ (Rle $n1 $n2)/\(Rle $n2 $n3) ] -> [[ "``" (REXPR $n1) [1 0] "<= " (REXPR $n2) [1 0] "<= " (REXPR $n3) "``"]] | Rle_Rlt [ (Rle $n1 $n2)/\(Rlt $n2 $n3) ] -> [[ "``" (REXPR $n1) [1 0] "<= "(REXPR $n2) [1 0] "< " (REXPR $n3) "``"]] | Rlt_Rle [ (Rlt $n1 $n2)/\(Rle $n2 $n3) ] -> [[ "``" (REXPR $n1) [1 0] "< " (REXPR $n2) [1 0] "<= " (REXPR $n3) "``"]] | Rlt_Rlt [ (Rlt $n1 $n2)/\(Rlt $n2 $n3) ] -> [[ "``" (REXPR $n1) [1 0] "< " (REXPR $n2) [1 0] "< " (REXPR $n3) "``"]] | Rzero [ R0 ] -> [ "``0``" ] | Rone [ R1 ] -> [ "``1``" ] ; level 7: Rplus [ (Rplus $n1 $n2) ] -> [ [ "``"(REXPR $n1):E "+" [0 0] (REXPR $n2):L "``"] ] | Rodd_outside [(Rplus R1 $r)] -> [ $r:"r_printer_odd_outside"] | Rminus [ (Rminus $n1 $n2) ] -> [ [ "``"(REXPR $n1):E "-" [0 0] (REXPR $n2):L "``"] ] ; level 6: Rmult [ (Rmult $n1 $n2) ] -> [ [ "``"(REXPR $n1):E "*" [0 0] (REXPR $n2):L "``"] ] | Reven_outside [ (Rmult (Rplus R1 R1) $r) ] -> [ $r:"r_printer_even_outside"] | Rdiv [ (Rdiv $n1 $n2) ] -> [ [ "``"(REXPR $n1):E "/" [0 0] (REXPR $n2):L "``"] ] ; level 8: Ropp [(Ropp $n1)] -> [ [ "``" "-"(REXPR $n1):E "``"] ] | Rinv [(Rinv $n1)] -> [ [ "``" "/"(REXPR $n1):E "``"] ] ; level 0: rescape_inside [<< (REXPR $r) >>] -> [ "[" $r:E "]" ] ; level 4: Rappl_inside [<<(REXPR (APPLIST $h ($LIST $t)))>>] -> [ [ "("(REXPR $h):E [1 0] (RAPPLINSIDETAIL ($LIST $t)):E ")"] ] | Rappl_inside_tail [<<(RAPPLINSIDETAIL $h ($LIST $t))>>] -> [(REXPR $h):E [1 0] (RAPPLINSIDETAIL ($LIST $t)):E] | Rappl_inside_one [<<(RAPPLINSIDETAIL $e)>>] ->[(REXPR $e):E] | rpair_inside [<<(REXPR <<(pair $s1 $s2 $r1 $r2)>>)>>] -> [ [ "("(REXPR $r1):E "," [1 0] (REXPR $r2):E ")"] ] ; level 3: rvar_inside [<<(REXPR ($VAR $i))>>] -> [$i] | rsecvar_inside [<<(REXPR (SECVAR $i))>>] -> [(SECVAR $i)] | rconst_inside [<<(REXPR (CONST $c))>>] -> [(CONST $c)] | rmutind_inside [<<(REXPR (MUTIND $i $n))>>] -> [(MUTIND $i $n)] | rmutconstruct_inside [<<(REXPR (MUTCONSTRUCT $c1 $c2 $c3))>>] -> [ (MUTCONSTRUCT $c1 $c2 $c3) ] | rimplicit_head_inside [<<(REXPR (XTRA "!" $c))>>] -> [ $c ] | rimplicit_arg_inside [<<(REXPR (XTRA "!" $n $c))>>] -> [ ] ; level 7: Rplus_inside [<<(REXPR <<(Rplus $n1 $n2)>>)>>] -> [ (REXPR $n1):E "+" [0 0] (REXPR $n2):L ] | Rminus_inside [<<(REXPR <<(Rminus $n1 $n2)>>)>>] -> [ (REXPR $n1):E "-" [0 0] (REXPR $n2):L ] | NRplus_inside [<<(REXPR <<(NRplus $r)>>)>>] -> [ "(" "1" "+" (REXPR $r):L ")"] ; level 6: Rmult_inside [<<(REXPR <<(Rmult $n1 $n2)>>)>>] -> [ (REXPR $n1):E "*" (REXPR $n2):L ] | NRmult_inside [<<(REXPR <<(NRmult $r)>>)>>] -> [ "(" "2" "*" (REXPR $r):L ")"] ; level 5: Ropp_inside [<<(REXPR <<(Ropp $n1)>>)>>] -> [ " -" (REXPR $n1):E ] | Rinv_inside [<<(REXPR <<(Rinv $n1)>>)>>] -> [ "/" (REXPR $n1):E ] | Rdiv_inside [<<(REXPR <<(Rdiv $n1 $n2)>>)>>] -> [ (REXPR $n1):E "/" [0 0] (REXPR $n2):L ] ; level 0: Rzero_inside [<<(REXPR <>)>>] -> ["0"] | Rone_inside [<<(REXPR <>)>>] -> ["1"] | Rodd_inside [<<(REXPR <<(Rplus R1 $r)>>)>>] -> [ $r:"r_printer_odd" ] | Reven_inside [<<(REXPR <<(Rmult (Rplus R1 R1) $r)>>)>>] -> [ $r:"r_printer_even" ] . (* For parsing/printing based on scopes *) Module R_scope. Infix "<=" Rle (at level 5, no associativity) : R_scope V8only. Infix "<" Rlt (at level 5, no associativity) : R_scope V8only. Infix ">=" Rge (at level 5, no associativity) : R_scope V8only. Infix ">" Rgt (at level 5, no associativity) : R_scope V8only. Infix "+" Rplus (at level 4) : R_scope V8only. Infix "-" Rminus (at level 4) : R_scope V8only. Infix "*" Rmult (at level 3) : R_scope V8only. Infix "/" Rdiv (at level 3) : R_scope V8only. Notation "- x" := (Ropp x) (at level 0) : R_scope V8only. Notation "x == y == z" := (eqT R x y)/\(eqT R y z) (at level 5, y at level 4, no associtivity): R_scope. Notation "x <= y <= z" := (Rle x y)/\(Rle y z) (at level 5, y at level 4) : R_scope V8only. Notation "x <= y < z" := (Rle x y)/\(Rlt y z) (at level 5, y at level 4) : R_scope V8only. Notation "x < y < z" := (Rlt x y)/\(Rlt y z) (at level 5, y at level 4) : R_scope V8only. Notation "x < y <= z" := (Rlt x y)/\(Rle y z) (at level 5, y at level 4) : R_scope V8only. Notation "/ x" := (Rinv x) (at level 0): R_scope V8only. Open Local Scope R_scope. End R_scope. ].