(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R. Definition sigma [low,high:nat] : R := (sum_f_R0 [k:nat](f (plus low k)) (minus high low)). Theorem sigma_split : (low,high,k:nat) (le low k)->(lt k high)->``(sigma low high)==(sigma low k)+(sigma (S k) high)``. Intros; Induction k. Cut low = O. Intro; Rewrite H1; Unfold sigma; Rewrite <- minus_n_n; Rewrite <- minus_n_O; Simpl; Replace (minus high (S O)) with (pred high). Apply (decomp_sum [k:nat](f k)). Assumption. Apply pred_of_minus. Inversion H; Reflexivity. Cut (le low k)\/low=(S k). Intro; Elim H1; Intro. Replace (sigma low (S k)) with ``(sigma low k)+(f (S k))``. Rewrite Rplus_assoc; Replace ``(f (S k))+(sigma (S (S k)) high)`` with (sigma (S k) high). Apply Hreck. Assumption. Apply lt_trans with (S k); [Apply lt_n_Sn | Assumption]. Unfold sigma; Replace (minus high (S (S k))) with (pred (minus high (S k))). Pattern 3 (S k); Replace (S k) with (plus (S k) O); [Idtac | Ring]. Replace (sum_f_R0 [k0:nat](f (plus (S (S k)) k0)) (pred (minus high (S k)))) with (sum_f_R0 [k0:nat](f (plus (S k) (S k0))) (pred (minus high (S k)))). Apply (decomp_sum [i:nat](f (plus (S k) i))). Apply lt_minus_O_lt; Assumption. Apply sum_eq; Intros; Replace (plus (S k) (S i)) with (plus (S (S k)) i). Reflexivity. Apply INR_eq; Do 2 Rewrite plus_INR; Do 3 Rewrite S_INR; Ring. Replace (minus high (S (S k))) with (minus (minus high (S k)) (S O)). Apply pred_of_minus. Apply INR_eq; Repeat Rewrite minus_INR. Do 4 Rewrite S_INR; Ring. Apply lt_le_S; Assumption. Apply lt_le_weak; Assumption. Apply lt_le_S; Apply lt_minus_O_lt; Assumption. Unfold sigma; Replace (minus (S k) low) with (S (minus k low)). Pattern 1 (S k); Replace (S k) with (plus low (S (minus k low))). Symmetry; Apply (tech5 [i:nat](f (plus low i))). Apply INR_eq; Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite minus_INR. Ring. Assumption. Apply minus_Sn_m; Assumption. Rewrite <- H2; Unfold sigma; Rewrite <- minus_n_n; Simpl; Replace (minus high (S low)) with (pred (minus high low)). Replace (sum_f_R0 [k0:nat](f (S (plus low k0))) (pred (minus high low))) with (sum_f_R0 [k0:nat](f (plus low (S k0))) (pred (minus high low))). Apply (decomp_sum [k0:nat](f (plus low k0))). Apply lt_minus_O_lt. Apply le_lt_trans with (S k); [Rewrite H2; Apply le_n | Assumption]. Apply sum_eq; Intros; Replace (S (plus low i)) with (plus low (S i)). Reflexivity. Apply INR_eq; Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite plus_INR; Ring. Replace (minus high (S low)) with (minus (minus high low) (S O)). Apply pred_of_minus. Apply INR_eq; Repeat Rewrite minus_INR. Do 2 Rewrite S_INR; Ring. Apply lt_le_S; Rewrite H2; Assumption. Rewrite H2; Apply lt_le_weak; Assumption. Apply lt_le_S; Apply lt_minus_O_lt; Rewrite H2; Assumption. Inversion H; [ Right; Reflexivity | Left; Assumption]. Qed. Theorem sigma_diff : (low,high,k:nat) (le low k) -> (lt k high )->``(sigma low high)-(sigma low k)==(sigma (S k) high)``. Intros low high k H1 H2; Symmetry; Rewrite -> (sigma_split H1 H2); Ring. Qed. Theorem sigma_diff_neg : (low,high,k:nat) (le low k) -> (lt k high)-> ``(sigma low k)-(sigma low high)==-(sigma (S k) high)``. Intros low high k H1 H2; Rewrite -> (sigma_split H1 H2); Ring. Qed. Theorem sigma_first : (low,high:nat) (lt low high) -> ``(sigma low high)==(f low)+(sigma (S low) high)``. Intros low high H1; Generalize (lt_le_S low high H1); Intro H2; Generalize (lt_le_weak low high H1); Intro H3; Replace ``(f low)`` with ``(sigma low low)``. Apply sigma_split. Apply le_n. Assumption. Unfold sigma; Rewrite <- minus_n_n. Simpl. Replace (plus low O) with low; [Reflexivity | Ring]. Qed. Theorem sigma_last : (low,high:nat) (lt low high) -> ``(sigma low high)==(f high)+(sigma low (pred high))``. Intros low high H1; Generalize (lt_le_S low high H1); Intro H2; Generalize (lt_le_weak low high H1); Intro H3; Replace ``(f high)`` with ``(sigma high high)``. Rewrite Rplus_sym; Cut high = (S (pred high)). Intro; Pattern 3 high; Rewrite H. Apply sigma_split. Apply le_S_n; Rewrite <- H; Apply lt_le_S; Assumption. Apply lt_pred_n_n; Apply le_lt_trans with low; [Apply le_O_n | Assumption]. Apply S_pred with O; Apply le_lt_trans with low; [Apply le_O_n | Assumption]. Unfold sigma; Rewrite <- minus_n_n; Simpl; Replace (plus high O) with high; [Reflexivity | Ring]. Qed. Theorem sigma_eq_arg : (low:nat) (sigma low low)==(f low). Intro; Unfold sigma; Rewrite <- minus_n_n. Simpl; Replace (plus low O) with low; [Reflexivity | Ring]. Qed. End Sigma.