(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R. (*********) Fixpoint Rmax_N [N:nat]:R:= Cases N of O => (Un O) |(S n) => (Rmax (Un (S n)) (Rmax_N n)) end. (*********) Definition EUn:R->Prop:=[r:R](Ex [i:nat] (r==(Un i))). (*********) Definition Un_cv:R->Prop:=[l:R] (eps:R)(Rgt eps R0)->(Ex[N:nat](n:nat)(ge n N)-> (Rlt (R_dist (Un n) l) eps)). (*********) Definition Cauchy_crit:Prop:=(eps:R)(Rgt eps R0)-> (Ex[N:nat] (n,m:nat)(ge n N)->(ge m N)-> (Rlt (R_dist (Un n) (Un m)) eps)). (*********) Definition Un_growing:Prop:=(n:nat)(Rle (Un n) (Un (S n))). (*********) Lemma EUn_noempty:(ExT [r:R] (EUn r)). Unfold EUn;Split with (Un O);Split with O;Trivial. Qed. (*********) Lemma Un_in_EUn:(n:nat)(EUn (Un n)). Intro;Unfold EUn;Split with n;Trivial. Qed. (*********) Lemma Un_bound_imp:(x:R)((n:nat)(Rle (Un n) x))->(is_upper_bound EUn x). Intros;Unfold is_upper_bound;Intros;Unfold EUn in H0;Elim H0;Clear H0; Intros;Generalize (H x1);Intro;Rewrite <- H0 in H1;Trivial. Qed. (*********) Lemma growing_prop:(n,m:nat)Un_growing->(ge n m)->(Rge (Un n) (Un m)). Double Induction n m;Intros. Unfold Rge;Right;Trivial. ElimType False;Unfold ge in H1;Generalize (le_Sn_O n0);Intro;Auto. Cut (ge n0 (0)). Generalize H0;Intros;Unfold Un_growing in H0; Apply (Rge_trans (Un (S n0)) (Un n0) (Un (0)) (Rle_sym1 (Un n0) (Un (S n0)) (H0 n0)) (H O H2 H3)). Elim n0;Auto. Elim (lt_eq_lt_dec n1 n0);Intro y. Elim y;Clear y;Intro y. Unfold ge in H2;Generalize (le_not_lt n0 n1 (le_S_n n0 n1 H2));Intro; ElimType False;Auto. Rewrite y;Unfold Rge;Right;Trivial. Unfold ge in H0;Generalize (H0 (S n0) H1 (lt_le_S n0 n1 y));Intro; Unfold Un_growing in H1; Apply (Rge_trans (Un (S n1)) (Un n1) (Un (S n0)) (Rle_sym1 (Un n1) (Un (S n1)) (H1 n1)) H3). Qed. (* classical is needed: [not_all_not_ex] *) (*********) Lemma Un_cv_crit:Un_growing->(bound EUn)->(ExT [l:R] (Un_cv l)). Unfold Un_growing Un_cv;Intros; Generalize (complet_weak EUn H0 EUn_noempty);Intro; Elim H1;Clear H1;Intros;Split with x;Intros; Unfold is_lub in H1;Unfold bound in H0;Unfold is_upper_bound in H0 H1; Elim H0;Clear H0;Intros;Elim H1;Clear H1;Intros; Generalize (H3 x0 H0);Intro;Cut (n:nat)(Rle (Un n) x);Intro. Cut (Ex [N:nat] (Rlt (Rminus x eps) (Un N))). Intro;Elim H6;Clear H6;Intros;Split with x1. Intros;Unfold R_dist;Apply (Rabsolu_def1 (Rminus (Un n) x) eps). Unfold Rgt in H2; Apply (Rle_lt_trans (Rminus (Un n) x) R0 eps (Rle_minus (Un n) x (H5 n)) H2). Fold Un_growing in H;Generalize (growing_prop n x1 H H7);Intro; Generalize (Rlt_le_trans (Rminus x eps) (Un x1) (Un n) H6 (Rle_sym2 (Un x1) (Un n) H8));Intro; Generalize (Rlt_compatibility (Ropp x) (Rminus x eps) (Un n) H9); Unfold Rminus;Rewrite <-(Rplus_assoc (Ropp x) x (Ropp eps)); Rewrite (Rplus_sym (Ropp x) (Un n));Fold (Rminus (Un n) x); Rewrite Rplus_Ropp_l;Rewrite (let (H1,H2)=(Rplus_ne (Ropp eps)) in H2); Trivial. Cut ~((N:nat)(Rge (Rminus x eps) (Un N))). Intro;Apply (not_all_not_ex nat ([N:nat](Rlt (Rminus x eps) (Un N)))); Red;Intro;Red in H6;Elim H6;Clear H6;Intro; Apply (Rlt_not_ge (Rminus x eps) (Un N) (H7 N)). Red;Intro;Cut (N:nat)(Rle (Un N) (Rminus x eps)). Intro;Generalize (Un_bound_imp (Rminus x eps) H7);Intro; Unfold is_upper_bound in H8;Generalize (H3 (Rminus x eps) H8);Intro; Generalize (Rle_minus x (Rminus x eps) H9);Unfold Rminus; Rewrite Ropp_distr1;Rewrite <- Rplus_assoc;Rewrite Rplus_Ropp_r; Rewrite (let (H1,H2)=(Rplus_ne (Ropp (Ropp eps))) in H2); Rewrite Ropp_Ropp;Intro;Unfold Rgt in H2; Generalize (Rle_not eps R0 H2);Intro;Auto. Intro;Elim (H6 N);Intro;Unfold Rle. Left;Unfold Rgt in H7;Assumption. Right;Auto. Apply (H1 (Un n) (Un_in_EUn n)). Qed. (*********) Lemma finite_greater:(N:nat)(ExT [M:R] (n:nat)(le n N)->(Rle (Un n) M)). Intro;Induction N. Split with (Un O);Intros;Rewrite (le_n_O_eq n H); Apply (eq_Rle (Un (n)) (Un (n)) (refl_eqT R (Un (n)))). Elim HrecN;Clear HrecN;Intros;Split with (Rmax (Un (S N)) x);Intros; Elim (Rmax_Rle (Un (S N)) x (Un n));Intros;Clear H1;Inversion H0. Rewrite <-H1;Rewrite <-H1 in H2; Apply (H2 (or_introl (Rle (Un n) (Un n)) (Rle (Un n) x) (eq_Rle (Un n) (Un n) (refl_eqT R (Un n))))). Apply (H2 (or_intror (Rle (Un n) (Un (S N))) (Rle (Un n) x) (H n H3))). Qed. (*********) Lemma cauchy_bound:Cauchy_crit->(bound EUn). Unfold Cauchy_crit bound;Intros;Unfold is_upper_bound; Unfold Rgt in H;Elim (H R1 Rlt_R0_R1);Clear H;Intros; Generalize (H x);Intro;Generalize (le_dec x);Intro; Elim (finite_greater x);Intros;Split with (Rmax x0 (Rplus (Un x) R1)); Clear H;Intros;Unfold EUn in H;Elim H;Clear H;Intros;Elim (H1 x2); Clear H1;Intro y. Unfold ge in H0;Generalize (H0 x2 (le_n x) y);Clear H0;Intro; Rewrite <- H in H0;Unfold R_dist in H0; Elim (Rabsolu_def2 (Rminus (Un x) x1) R1 H0);Clear H0;Intros; Elim (Rmax_Rle x0 (Rplus (Un x) R1) x1);Intros;Apply H4;Clear H3 H4; Right;Clear H H0 y;Apply (Rlt_le x1 (Rplus (Un x) R1)); Generalize (Rlt_minus (Ropp R1) (Rminus (Un x) x1) H1);Clear H1; Intro;Apply (Rminus_lt x1 (Rplus (Un x) R1)); Cut (Rminus (Ropp R1) (Rminus (Un x) x1))== (Rminus x1 (Rplus (Un x) R1));[Intro;Rewrite H0 in H;Assumption|Ring]. Generalize (H2 x2 y);Clear H2 H0;Intro;Rewrite<-H in H0; Elim (Rmax_Rle x0 (Rplus (Un x) R1) x1);Intros;Clear H1;Apply H2; Left;Assumption. Qed. End sequence. (*****************************************************************) (* Definition of Power Series and properties *) (* *) (*****************************************************************) Section Isequence. (*********) Variable An:nat->R. (*********) Definition Pser:R->R->Prop:=[x,l:R] (infinit_sum [n:nat](Rmult (An n) (pow x n)) l). End Isequence. Lemma GP_infinite: (x:R) (Rlt (Rabsolu x) R1) -> (Pser ([n:nat] R1) x (Rinv(Rminus R1 x))). Intros;Unfold Pser; Unfold infinit_sum;Intros;Elim (Req_EM x R0). Intros;Exists O; Intros;Rewrite H1;Rewrite minus_R0;Rewrite Rinv_R1; Cut (sum_f_R0 [n0:nat](Rmult R1 (pow R0 n0)) n)==R1. Intros; Rewrite H3;Rewrite R_dist_eq;Auto. Elim n; Simpl. Ring. Intros;Rewrite H3;Ring. Intro;Cut (Rlt R0 (Rmult eps (Rmult (Rabsolu (Rminus R1 x)) (Rabsolu (Rinv x))))). Intro;Elim (pow_lt_1_zero x H (Rmult eps (Rmult (Rabsolu (Rminus R1 x)) (Rabsolu (Rinv x)))) H2);Intro N; Intros;Exists N; Intros; Cut (sum_f_R0 [n0:nat](Rmult R1 (pow x n0)) n)== (sum_f_R0 [n0:nat](pow x n0) n). Intros; Rewrite H5;Apply (Rlt_monotony_rev (Rabsolu (Rminus R1 x)) (R_dist (sum_f_R0 [n0:nat](pow x n0) n) (Rinv (Rminus R1 x))) eps). Apply Rabsolu_pos_lt. Apply Rminus_eq_contra. Apply imp_not_Req. Right; Unfold Rgt. Apply (Rle_lt_trans x (Rabsolu x) R1). Apply Rle_Rabsolu. Assumption. Unfold R_dist; Rewrite <- Rabsolu_mult. Rewrite Rminus_distr. Cut (Rmult (Rminus R1 x) (sum_f_R0 [n0:nat](pow x n0) n))== (Ropp (Rmult(sum_f_R0 [n0:nat](pow x n0) n) (Rminus x R1))). Intro; Rewrite H6. Rewrite GP_finite. Rewrite Rinv_r. Cut (Rminus (Ropp (Rminus (pow x (plus n (1))) R1)) R1)== (Ropp (pow x (plus n (1)))). Intro; Rewrite H7. Rewrite Rabsolu_Ropp;Cut (plus n (S O))=(S n);Auto. Intro H8;Rewrite H8;Simpl;Rewrite Rabsolu_mult; Apply (Rlt_le_trans (Rmult (Rabsolu x) (Rabsolu (pow x n))) (Rmult (Rabsolu x) (Rmult eps (Rmult (Rabsolu (Rminus R1 x)) (Rabsolu (Rinv x))))) (Rmult (Rabsolu (Rminus R1 x)) eps)). Apply Rlt_monotony. Apply Rabsolu_pos_lt. Assumption. Auto. Cut (Rmult (Rabsolu x) (Rmult eps (Rmult (Rabsolu (Rminus R1 x)) (Rabsolu (Rinv x)))))== (Rmult (Rmult (Rabsolu x) (Rabsolu (Rinv x))) (Rmult eps (Rabsolu (Rminus R1 x)))). Clear H8;Intros; Rewrite H8;Rewrite <- Rabsolu_mult;Rewrite Rinv_r. Rewrite Rabsolu_R1;Cut (Rmult R1 (Rmult eps (Rabsolu (Rminus R1 x))))== (Rmult (Rabsolu (Rminus R1 x)) eps). Intros; Rewrite H9;Unfold Rle; Right; Reflexivity. Ring. Assumption. Ring. Ring. Ring. Apply Rminus_eq_contra. Apply imp_not_Req. Right; Unfold Rgt. Apply (Rle_lt_trans x (Rabsolu x) R1). Apply Rle_Rabsolu. Assumption. Ring; Ring. Elim n; Simpl. Ring. Intros; Rewrite H5. Ring. Apply Rmult_lt_pos. Auto. Apply Rmult_lt_pos. Apply Rabsolu_pos_lt. Apply Rminus_eq_contra. Apply imp_not_Req. Right; Unfold Rgt. Apply (Rle_lt_trans x (Rabsolu x) R1). Apply Rle_Rabsolu. Assumption. Apply Rabsolu_pos_lt. Apply Rinv_neq_R0. Assumption. Qed.