(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R->R:=[x,y:R] Cases (total_order_Rle x y) of (leftT _) => x | (rightT _) => y end. (*********) Lemma Rmin_Rgt_l:(r1,r2,r:R)(Rgt (Rmin r1 r2) r) -> ((Rgt r1 r)/\(Rgt r2 r)). Intros r1 r2 r;Unfold Rmin;Case (total_order_Rle r1 r2);Intros. Split. Assumption. Unfold Rgt;Unfold Rgt in H;Exact (Rlt_le_trans r r1 r2 H r0). Split. Generalize (not_Rle r1 r2 n);Intro;Exact (Rgt_trans r1 r2 r H0 H). Assumption. Qed. (*********) Lemma Rmin_Rgt_r:(r1,r2,r:R)(((Rgt r1 r)/\(Rgt r2 r)) -> (Rgt (Rmin r1 r2) r)). Intros;Unfold Rmin;Case (total_order_Rle r1 r2);Elim H;Clear H;Intros; Assumption. Qed. (*********) Lemma Rmin_Rgt:(r1,r2,r:R)(Rgt (Rmin r1 r2) r)<-> ((Rgt r1 r)/\(Rgt r2 r)). Intros; Split. Exact (Rmin_Rgt_l r1 r2 r). Exact (Rmin_Rgt_r r1 r2 r). Qed. (*********) Lemma Rmin_l : (x,y:R) ``(Rmin x y)<=x``. Intros; Unfold Rmin; Case (total_order_Rle x y); Intro H1; [Right; Reflexivity | Auto with real]. Qed. (*********) Lemma Rmin_r : (x,y:R) ``(Rmin x y)<=y``. Intros; Unfold Rmin; Case (total_order_Rle x y); Intro H1; [Assumption | Auto with real]. Qed. (*********) Lemma Rmin_sym : (a,b:R) (Rmin a b)==(Rmin b a). Intros; Unfold Rmin; Case (total_order_Rle a b); Case (total_order_Rle b a); Intros; Try Reflexivity Orelse (Apply Rle_antisym; Assumption Orelse Auto with real). Qed. (*********) Lemma Rmin_stable_in_posreal : (x,y:posreal) ``0<(Rmin x y)``. Intros; Apply Rmin_Rgt_r; Split; [Apply (cond_pos x) | Apply (cond_pos y)]. Qed. (*******************************) (** Rmax *) (*******************************) (*********) Definition Rmax :R->R->R:=[x,y:R] Cases (total_order_Rle x y) of (leftT _) => y | (rightT _) => x end. (*********) Lemma Rmax_Rle:(r1,r2,r:R)(Rle r (Rmax r1 r2))<-> ((Rle r r1)\/(Rle r r2)). Intros;Split. Unfold Rmax;Case (total_order_Rle r1 r2);Intros;Auto. Intro;Unfold Rmax;Case (total_order_Rle r1 r2);Elim H;Clear H;Intros;Auto. Apply (Rle_trans r r1 r2);Auto. Generalize (not_Rle r1 r2 n);Clear n;Intro;Unfold Rgt in H0; Apply (Rlt_le r r1 (Rle_lt_trans r r2 r1 H H0)). Qed. Lemma RmaxLess1: (r1, r2 : R) (Rle r1 (Rmax r1 r2)). Intros r1 r2; Unfold Rmax; Case (total_order_Rle r1 r2); Auto with real. Qed. Lemma RmaxLess2: (r1, r2 : R) (Rle r2 (Rmax r1 r2)). Intros r1 r2; Unfold Rmax; Case (total_order_Rle r1 r2); Auto with real. Qed. Lemma RmaxSym: (p, q : R) (Rmax p q) == (Rmax q p). Intros p q; Unfold Rmax; Case (total_order_Rle p q); Case (total_order_Rle q p); Auto; Intros H1 H2; Apply Rle_antisym; Auto with real. Qed. Lemma RmaxRmult: (p, q, r : R) (Rle R0 r) -> (Rmax (Rmult r p) (Rmult r q)) == (Rmult r (Rmax p q)). Intros p q r H; Unfold Rmax. Case (total_order_Rle p q); Case (total_order_Rle (Rmult r p) (Rmult r q)); Auto; Intros H1 H2; Auto. Case H; Intros E1. Case H1; Auto with real. Rewrite <- E1; Repeat Rewrite Rmult_Ol; Auto. Case H; Intros E1. Case H2; Auto with real. Apply Rle_monotony_contra with z := r; Auto. Rewrite <- E1; Repeat Rewrite Rmult_Ol; Auto. Qed. Lemma Rmax_stable_in_negreal : (x,y:negreal) ``(Rmax x y)<0``. Intros; Unfold Rmax; Case (total_order_Rle x y); Intro; [Apply (cond_neg y) | Apply (cond_neg x)]. Qed. (*******************************) (** Rabsolu *) (*******************************) (*********) Lemma case_Rabsolu:(r:R)(sumboolT (Rlt r R0) (Rge r R0)). Intro;Generalize (total_order_Rle R0 r);Intro X;Elim X;Intro;Clear X. Right;Apply (Rle_sym1 R0 r a). Left;Fold (Rgt R0 r);Apply (not_Rle R0 r b). Qed. (*********) Definition Rabsolu:R->R:= [r:R](Cases (case_Rabsolu r) of (leftT _) => (Ropp r) |(rightT _) => r end). (*********) Lemma Rabsolu_R0:(Rabsolu R0)==R0. Unfold Rabsolu;Case (case_Rabsolu R0);Auto;Intro. Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto. Qed. Lemma Rabsolu_R1: (Rabsolu R1)==R1. Unfold Rabsolu; Case (case_Rabsolu R1); Auto with real. Intros H; Absurd ``1 < 0``;Auto with real. Qed. (*********) Lemma Rabsolu_no_R0:(r:R)~r==R0->~(Rabsolu r)==R0. Intros;Unfold Rabsolu;Case (case_Rabsolu r);Intro;Auto. Apply Ropp_neq;Auto. Qed. (*********) Lemma Rabsolu_left: (r:R)(Rlt r R0)->((Rabsolu r) == (Ropp r)). Intros;Unfold Rabsolu;Case (case_Rabsolu r);Trivial;Intro;Absurd (Rge r R0). Exact (Rlt_ge_not r R0 H). Assumption. Qed. (*********) Lemma Rabsolu_right: (r:R)(Rge r R0)->((Rabsolu r) == r). Intros;Unfold Rabsolu;Case (case_Rabsolu r);Intro. Absurd (Rge r R0). Exact (Rlt_ge_not r R0 r0). Assumption. Trivial. Qed. Lemma Rabsolu_left1: (a : R) (Rle a R0) -> (Rabsolu a) == (Ropp a). Intros a H; Case H; Intros H1. Apply Rabsolu_left; Auto. Rewrite H1; Simpl; Rewrite Rabsolu_right; Auto with real. Qed. (*********) Lemma Rabsolu_pos:(x:R)(Rle R0 (Rabsolu x)). Intros;Unfold Rabsolu;Case (case_Rabsolu x);Intro. Generalize (Rlt_Ropp x R0 r);Intro;Unfold Rgt in H; Rewrite Ropp_O in H;Unfold Rle;Left;Assumption. Apply Rle_sym2;Assumption. Qed. Lemma Rle_Rabsolu: (x:R) (Rle x (Rabsolu x)). Intro; Unfold Rabsolu;Case (case_Rabsolu x);Intros;Fourier. Qed. (*********) Lemma Rabsolu_pos_eq:(x:R)(Rle R0 x)->(Rabsolu x)==x. Intros;Unfold Rabsolu;Case (case_Rabsolu x);Intro; [Generalize (Rle_not R0 x r);Intro;ElimType False;Auto|Trivial]. Qed. (*********) Lemma Rabsolu_Rabsolu:(x:R)(Rabsolu (Rabsolu x))==(Rabsolu x). Intro;Apply (Rabsolu_pos_eq (Rabsolu x) (Rabsolu_pos x)). Qed. (*********) Lemma Rabsolu_pos_lt:(x:R)(~x==R0)->(Rlt R0 (Rabsolu x)). Intros;Generalize (Rabsolu_pos x);Intro;Unfold Rle in H0; Elim H0;Intro;Auto. ElimType False;Clear H0;Elim H;Clear H;Generalize H1; Unfold Rabsolu;Case (case_Rabsolu x);Intros;Auto. Clear r H1; Generalize (Rplus_plus_r x R0 (Ropp x) H0); Rewrite (let (H1,H2)=(Rplus_ne x) in H1);Rewrite (Rplus_Ropp_r x);Trivial. Qed. (*********) Lemma Rabsolu_minus_sym:(x,y:R) (Rabsolu (Rminus x y))==(Rabsolu (Rminus y x)). Intros;Unfold Rabsolu;Case (case_Rabsolu (Rminus x y)); Case (case_Rabsolu (Rminus y x));Intros. Generalize (Rminus_lt y x r);Generalize (Rminus_lt x y r0);Intros; Generalize (Rlt_antisym x y H);Intro;ElimType False;Auto. Rewrite (Ropp_distr2 x y);Trivial. Rewrite (Ropp_distr2 y x);Trivial. Unfold Rge in r r0;Elim r;Elim r0;Intros;Clear r r0. Generalize (Rgt_RoppO (Rminus x y) H);Rewrite (Ropp_distr2 x y); Intro;Unfold Rgt in H0;Generalize (Rlt_antisym R0 (Rminus y x) H0); Intro;ElimType False;Auto. Rewrite (Rminus_eq x y H);Trivial. Rewrite (Rminus_eq y x H0);Trivial. Rewrite (Rminus_eq y x H0);Trivial. Qed. (*********) Lemma Rabsolu_mult:(x,y:R) (Rabsolu (Rmult x y))==(Rmult (Rabsolu x) (Rabsolu y)). Intros;Unfold Rabsolu;Case (case_Rabsolu (Rmult x y)); Case (case_Rabsolu x);Case (case_Rabsolu y);Intros;Auto. Generalize (Rlt_anti_monotony y x R0 r r0);Intro; Rewrite (Rmult_Or y) in H;Generalize (Rlt_antisym (Rmult x y) R0 r1); Intro;Unfold Rgt in H;ElimType False;Rewrite (Rmult_sym y x) in H; Auto. Rewrite (Ropp_mul1 x y);Trivial. Rewrite (Rmult_sym x (Ropp y));Rewrite (Ropp_mul1 y x); Rewrite (Rmult_sym x y);Trivial. Unfold Rge in r r0;Elim r;Elim r0;Clear r r0;Intros;Unfold Rgt in H H0. Generalize (Rlt_monotony x R0 y H H0);Intro;Rewrite (Rmult_Or x) in H1; Generalize (Rlt_antisym (Rmult x y) R0 r1);Intro;ElimType False;Auto. Rewrite H in r1;Rewrite (Rmult_Ol y) in r1;Generalize (Rlt_antirefl R0); Intro;ElimType False;Auto. Rewrite H0 in r1;Rewrite (Rmult_Or x) in r1;Generalize (Rlt_antirefl R0); Intro;ElimType False;Auto. Rewrite H0 in r1;Rewrite (Rmult_Or x) in r1;Generalize (Rlt_antirefl R0); Intro;ElimType False;Auto. Rewrite (Ropp_mul2 x y);Trivial. Unfold Rge in r r1;Elim r;Elim r1;Clear r r1;Intros;Unfold Rgt in H0 H. Generalize (Rlt_monotony y x R0 H0 r0);Intro;Rewrite (Rmult_Or y) in H1; Rewrite (Rmult_sym y x) in H1; Generalize (Rlt_antisym (Rmult x y) R0 H1);Intro;ElimType False;Auto. Generalize (imp_not_Req x R0 (or_introl (Rlt x R0) (Rgt x R0) r0)); Generalize (imp_not_Req y R0 (or_intror (Rlt y R0) (Rgt y R0) H0));Intros; Generalize (without_div_Od x y H);Intro;Elim H3;Intro;ElimType False; Auto. Rewrite H0 in H;Rewrite (Rmult_Or x) in H;Unfold Rgt in H; Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto. Rewrite H0;Rewrite (Rmult_Or x);Rewrite (Rmult_Or (Ropp x));Trivial. Unfold Rge in r0 r1;Elim r0;Elim r1;Clear r0 r1;Intros;Unfold Rgt in H0 H. Generalize (Rlt_monotony x y R0 H0 r);Intro;Rewrite (Rmult_Or x) in H1; Generalize (Rlt_antisym (Rmult x y) R0 H1);Intro;ElimType False;Auto. Generalize (imp_not_Req y R0 (or_introl (Rlt y R0) (Rgt y R0) r)); Generalize (imp_not_Req R0 x (or_introl (Rlt R0 x) (Rgt R0 x) H0));Intros; Generalize (without_div_Od x y H);Intro;Elim H3;Intro;ElimType False; Auto. Rewrite H0 in H;Rewrite (Rmult_Ol y) in H;Unfold Rgt in H; Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto. Rewrite H0;Rewrite (Rmult_Ol y);Rewrite (Rmult_Ol (Ropp y));Trivial. Qed. (*********) Lemma Rabsolu_Rinv:(r:R)(~r==R0)->(Rabsolu (Rinv r))== (Rinv (Rabsolu r)). Intro;Unfold Rabsolu;Case (case_Rabsolu r); Case (case_Rabsolu (Rinv r));Auto;Intros. Apply Ropp_Rinv;Auto. Generalize (Rlt_Rinv2 r r1);Intro;Unfold Rge in r0;Elim r0;Intros. Unfold Rgt in H1;Generalize (Rlt_antisym R0 (Rinv r) H1);Intro; ElimType False;Auto. Generalize (imp_not_Req (Rinv r) R0 (or_introl (Rlt (Rinv r) R0) (Rgt (Rinv r) R0) H0));Intro; ElimType False;Auto. Unfold Rge in r1;Elim r1;Clear r1;Intro. Unfold Rgt in H0;Generalize (Rlt_antisym R0 (Rinv r) (Rlt_Rinv r H0));Intro;ElimType False;Auto. ElimType False;Auto. Qed. Lemma Rabsolu_Ropp: (x:R) (Rabsolu (Ropp x))==(Rabsolu x). Intro;Cut (Ropp x)==(Rmult (Ropp R1) x). Intros; Rewrite H. Rewrite Rabsolu_mult. Cut (Rabsolu (Ropp R1))==R1. Intros; Rewrite H0. Ring. Unfold Rabsolu; Case (case_Rabsolu (Ropp R1)). Intro; Ring. Intro H0;Generalize (Rle_sym2 R0 (Ropp R1) H0);Intros. Generalize (Rle_Ropp R0 (Ropp R1) H1). Rewrite Ropp_Ropp; Rewrite Ropp_O. Intro;Generalize (Rle_not R1 R0 Rlt_R0_R1);Intro; Generalize (Rle_sym2 R1 R0 H2);Intro; ElimType False;Auto. Ring. Qed. (*********) Lemma Rabsolu_triang:(a,b:R)(Rle (Rabsolu (Rplus a b)) (Rplus (Rabsolu a) (Rabsolu b))). Intros a b;Unfold Rabsolu;Case (case_Rabsolu (Rplus a b)); Case (case_Rabsolu a);Case (case_Rabsolu b);Intros. Apply (eq_Rle (Ropp (Rplus a b)) (Rplus (Ropp a) (Ropp b))); Rewrite (Ropp_distr1 a b);Reflexivity. (**) Rewrite (Ropp_distr1 a b); Apply (Rle_compatibility (Ropp a) (Ropp b) b); Unfold Rle;Unfold Rge in r;Elim r;Intro. Left;Unfold Rgt in H;Generalize (Rlt_compatibility (Ropp b) R0 b H); Intro;Elim (Rplus_ne (Ropp b));Intros v w;Rewrite v in H0;Clear v w; Rewrite (Rplus_Ropp_l b) in H0;Apply (Rlt_trans (Ropp b) R0 b H0 H). Right;Rewrite H;Apply Ropp_O. (**) Rewrite (Ropp_distr1 a b); Rewrite (Rplus_sym (Ropp a) (Ropp b)); Rewrite (Rplus_sym a (Ropp b)); Apply (Rle_compatibility (Ropp b) (Ropp a) a); Unfold Rle;Unfold Rge in r0;Elim r0;Intro. Left;Unfold Rgt in H;Generalize (Rlt_compatibility (Ropp a) R0 a H); Intro;Elim (Rplus_ne (Ropp a));Intros v w;Rewrite v in H0;Clear v w; Rewrite (Rplus_Ropp_l a) in H0;Apply (Rlt_trans (Ropp a) R0 a H0 H). Right;Rewrite H;Apply Ropp_O. (**) ElimType False;Generalize (Rge_plus_plus_r a b R0 r);Intro; Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w; Generalize (Rge_trans (Rplus a b) a R0 H r0);Intro;Clear H; Unfold Rge in H0;Elim H0;Intro;Clear H0. Unfold Rgt in H;Generalize (Rlt_antisym (Rplus a b) R0 r1);Intro;Auto. Absurd (Rplus a b)==R0;Auto. Apply (imp_not_Req (Rplus a b) R0);Left;Assumption. (**) ElimType False;Generalize (Rlt_compatibility a b R0 r);Intro; Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w; Generalize (Rlt_trans (Rplus a b) a R0 H r0);Intro;Clear H; Unfold Rge in r1;Elim r1;Clear r1;Intro. Unfold Rgt in H; Generalize (Rlt_trans (Rplus a b) R0 (Rplus a b) H0 H);Intro; Apply (Rlt_antirefl (Rplus a b));Assumption. Rewrite H in H0;Apply (Rlt_antirefl R0);Assumption. (**) Rewrite (Rplus_sym a b);Rewrite (Rplus_sym (Ropp a) b); Apply (Rle_compatibility b a (Ropp a)); Apply (Rminus_le a (Ropp a));Unfold Rminus;Rewrite (Ropp_Ropp a); Generalize (Rlt_compatibility a a R0 r0);Clear r r1;Intro; Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w; Generalize (Rlt_trans (Rplus a a) a R0 H r0);Intro; Apply (Rlt_le (Rplus a a) R0 H0). (**) Apply (Rle_compatibility a b (Ropp b)); Apply (Rminus_le b (Ropp b));Unfold Rminus;Rewrite (Ropp_Ropp b); Generalize (Rlt_compatibility b b R0 r);Clear r0 r1;Intro; Elim (Rplus_ne b);Intros v w;Rewrite v in H;Clear v w; Generalize (Rlt_trans (Rplus b b) b R0 H r);Intro; Apply (Rlt_le (Rplus b b) R0 H0). (**) Unfold Rle;Right;Reflexivity. Qed. (*********) Lemma Rabsolu_triang_inv:(a,b:R)(Rle (Rminus (Rabsolu a) (Rabsolu b)) (Rabsolu (Rminus a b))). Intros; Apply (Rle_anti_compatibility (Rabsolu b) (Rminus (Rabsolu a) (Rabsolu b)) (Rabsolu (Rminus a b))); Unfold Rminus; Rewrite <- (Rplus_assoc (Rabsolu b) (Rabsolu a) (Ropp (Rabsolu b))); Rewrite (Rplus_sym (Rabsolu b) (Rabsolu a)); Rewrite (Rplus_assoc (Rabsolu a) (Rabsolu b) (Ropp (Rabsolu b))); Rewrite (Rplus_Ropp_r (Rabsolu b)); Rewrite (proj1 ? ? (Rplus_ne (Rabsolu a))); Replace (Rabsolu a) with (Rabsolu (Rplus a R0)). Rewrite <- (Rplus_Ropp_r b); Rewrite <- (Rplus_assoc a b (Ropp b)); Rewrite (Rplus_sym a b); Rewrite (Rplus_assoc b a (Ropp b)). Exact (Rabsolu_triang b (Rplus a (Ropp b))). Rewrite (proj1 ? ? (Rplus_ne a));Trivial. Qed. (* ||a|-|b||<=|a-b| *) Lemma Rabsolu_triang_inv2 : (a,b:R) ``(Rabsolu ((Rabsolu a)-(Rabsolu b)))<=(Rabsolu (a-b))``. Cut (a,b:R) ``(Rabsolu b)<=(Rabsolu a)``->``(Rabsolu ((Rabsolu a)-(Rabsolu b))) <= (Rabsolu (a-b))``. Intros; NewDestruct (total_order (Rabsolu a) (Rabsolu b)) as [Hlt|[Heq|Hgt]]. Rewrite <- (Rabsolu_Ropp ``(Rabsolu a)-(Rabsolu b)``); Rewrite <- (Rabsolu_Ropp ``a-b``); Do 2 Rewrite Ropp_distr2. Apply H; Left; Assumption. Rewrite Heq; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos. Apply H; Left; Assumption. Intros; Replace ``(Rabsolu ((Rabsolu a)-(Rabsolu b)))`` with ``(Rabsolu a)-(Rabsolu b)``. Apply Rabsolu_triang_inv. Rewrite (Rabsolu_right ``(Rabsolu a)-(Rabsolu b)``); [Reflexivity | Apply Rle_sym1; Apply Rle_anti_compatibility with (Rabsolu b); Rewrite Rplus_Or; Replace ``(Rabsolu b)+((Rabsolu a)-(Rabsolu b))`` with (Rabsolu a); [Assumption | Ring]]. Qed. (*********) Lemma Rabsolu_def1:(x,a:R)(Rlt x a)->(Rlt (Ropp a) x)->(Rlt (Rabsolu x) a). Unfold Rabsolu;Intros;Case (case_Rabsolu x);Intro. Generalize (Rlt_Ropp (Ropp a) x H0);Unfold Rgt;Rewrite Ropp_Ropp;Intro; Assumption. Assumption. Qed. (*********) Lemma Rabsolu_def2:(x,a:R)(Rlt (Rabsolu x) a)->(Rlt x a)/\(Rlt (Ropp a) x). Unfold Rabsolu;Intro x;Case (case_Rabsolu x);Intros. Generalize (Rlt_RoppO x r);Unfold Rgt;Intro; Generalize (Rlt_trans R0 (Ropp x) a H0 H);Intro;Split. Apply (Rlt_trans x R0 a r H1). Generalize (Rlt_Ropp (Ropp x) a H);Rewrite (Ropp_Ropp x);Unfold Rgt;Trivial. Fold (Rgt a x) in H;Generalize (Rgt_ge_trans a x R0 H r);Intro; Generalize (Rgt_RoppO a H0);Intro;Fold (Rgt R0 (Ropp a)); Generalize (Rge_gt_trans x R0 (Ropp a) r H1);Unfold Rgt;Intro;Split; Assumption. Qed. Lemma RmaxAbs: (p, q, r : R) (Rle p q) -> (Rle q r) -> (Rle (Rabsolu q) (Rmax (Rabsolu p) (Rabsolu r))). Intros p q r H' H'0; Case (Rle_or_lt R0 p); Intros H'1. Repeat Rewrite Rabsolu_right; Auto with real. Apply Rle_trans with r; Auto with real. Apply RmaxLess2; Auto. Apply Rge_trans with p; Auto with real; Apply Rge_trans with q; Auto with real. Apply Rge_trans with p; Auto with real. Rewrite (Rabsolu_left p); Auto. Case (Rle_or_lt R0 q); Intros H'2. Repeat Rewrite Rabsolu_right; Auto with real. Apply Rle_trans with r; Auto. Apply RmaxLess2; Auto. Apply Rge_trans with q; Auto with real. Rewrite (Rabsolu_left q); Auto. Case (Rle_or_lt R0 r); Intros H'3. Repeat Rewrite Rabsolu_right; Auto with real. Apply Rle_trans with (Ropp p); Auto with real. Apply RmaxLess1; Auto. Rewrite (Rabsolu_left r); Auto. Apply Rle_trans with (Ropp p); Auto with real. Apply RmaxLess1; Auto. Qed. Lemma Rabsolu_Zabs: (z : Z) (Rabsolu (IZR z)) == (IZR (Zabs z)). Intros z; Case z; Simpl; Auto with real. Apply Rabsolu_right; Auto with real. Intros p0; Apply Rabsolu_right; Auto with real zarith. Intros p0; Rewrite Rabsolu_Ropp. Apply Rabsolu_right; Auto with real zarith. Qed.