(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R := [x:R](Cases (case_Rabsolu x) of (leftT _) => R0 | (rightT a) => (Rsqrt (mknonnegreal x (Rle_sym2 ? ? a))) end). Lemma sqrt_positivity : (x:R) ``0<=x`` -> ``0<=(sqrt x)``. Intros. Unfold sqrt. Case (case_Rabsolu x); Intro. Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? r H)). Apply Rsqrt_positivity. Qed. Lemma sqrt_sqrt : (x:R) ``0<=x`` -> ``(sqrt x)*(sqrt x)==x``. Intros. Unfold sqrt. Case (case_Rabsolu x); Intro. Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? r H)). Rewrite Rsqrt_Rsqrt; Reflexivity. Qed. Lemma sqrt_0 : ``(sqrt 0)==0``. Apply Rsqr_eq_0; Unfold Rsqr; Apply sqrt_sqrt; Right; Reflexivity. Qed. Lemma sqrt_1 : ``(sqrt 1)==1``. Apply (Rsqr_inj (sqrt R1) R1); [Apply sqrt_positivity; Left | Left | Unfold Rsqr; Rewrite -> sqrt_sqrt; [Ring | Left]]; Apply Rlt_R0_R1. Qed. Lemma sqrt_eq_0 : (x:R) ``0<=x``->``(sqrt x)==0``->``x==0``. Intros; Cut ``(Rsqr (sqrt x))==0``. Intro; Unfold Rsqr in H1; Rewrite -> sqrt_sqrt in H1; Assumption. Rewrite H0; Apply Rsqr_O. Qed. Lemma sqrt_lem_0 : (x,y:R) ``0<=x``->``0<=y``->(sqrt x)==y->``y*y==x``. Intros; Rewrite <- H1; Apply (sqrt_sqrt x H). Qed. Lemma sqtr_lem_1 : (x,y:R) ``0<=x``->``0<=y``->``y*y==x``->(sqrt x)==y. Intros; Apply Rsqr_inj; [Apply (sqrt_positivity x H) | Assumption | Unfold Rsqr; Rewrite -> H1; Apply (sqrt_sqrt x H)]. Qed. Lemma sqrt_def : (x:R) ``0<=x``->``(sqrt x)*(sqrt x)==x``. Intros; Apply (sqrt_sqrt x H). Qed. Lemma sqrt_square : (x:R) ``0<=x``->``(sqrt (x*x))==x``. Intros; Apply (Rsqr_inj (sqrt (Rsqr x)) x (sqrt_positivity (Rsqr x) (pos_Rsqr x)) H); Unfold Rsqr; Apply (sqrt_sqrt (Rsqr x) (pos_Rsqr x)). Qed. Lemma sqrt_Rsqr : (x:R) ``0<=x``->``(sqrt (Rsqr x))==x``. Intros; Unfold Rsqr; Apply sqrt_square; Assumption. Qed. Lemma sqrt_Rsqr_abs : (x:R) (sqrt (Rsqr x))==(Rabsolu x). Intro x; Rewrite -> Rsqr_abs; Apply sqrt_Rsqr; Apply Rabsolu_pos. Qed. Lemma Rsqr_sqrt : (x:R) ``0<=x``->(Rsqr (sqrt x))==x. Intros x H1; Unfold Rsqr; Apply (sqrt_sqrt x H1). Qed. Lemma sqrt_times : (x,y:R) ``0<=x``->``0<=y``->``(sqrt (x*y))==(sqrt x)*(sqrt y)``. Intros x y H1 H2; Apply (Rsqr_inj (sqrt (Rmult x y)) (Rmult (sqrt x) (sqrt y)) (sqrt_positivity (Rmult x y) (Rmult_le_pos x y H1 H2)) (Rmult_le_pos (sqrt x) (sqrt y) (sqrt_positivity x H1) (sqrt_positivity y H2))); Rewrite Rsqr_times; Repeat Rewrite Rsqr_sqrt; [Ring | Assumption |Assumption | Apply (Rmult_le_pos x y H1 H2)]. Qed. Lemma sqrt_lt_R0 : (x:R) ``0 ``0<(sqrt x)``. Intros x H1; Apply Rsqr_incrst_0; [Rewrite Rsqr_O; Rewrite Rsqr_sqrt ; [Assumption | Left; Assumption] | Right; Reflexivity | Apply (sqrt_positivity x (Rlt_le R0 x H1))]. Qed. Lemma sqrt_div : (x,y:R) ``0<=x``->``0``(sqrt (x/y))==(sqrt x)/(sqrt y)``. Intros x y H1 H2; Apply Rsqr_inj; [ Apply sqrt_positivity; Apply (Rmult_le_pos x (Rinv y)); [ Assumption | Generalize (Rlt_Rinv y H2); Clear H2; Intro H2; Left; Assumption] | Apply (Rmult_le_pos (sqrt x) (Rinv (sqrt y))) ; [ Apply (sqrt_positivity x H1) | Generalize (sqrt_lt_R0 y H2); Clear H2; Intro H2; Generalize (Rlt_Rinv (sqrt y) H2); Clear H2; Intro H2; Left; Assumption] | Rewrite Rsqr_div; Repeat Rewrite Rsqr_sqrt; [ Reflexivity | Left; Assumption | Assumption | Generalize (Rlt_Rinv y H2); Intro H3; Generalize (Rlt_le R0 (Rinv y) H3); Intro H4; Apply (Rmult_le_pos x (Rinv y) H1 H4) |Red; Intro H3; Generalize (Rlt_le R0 y H2); Intro H4; Generalize (sqrt_eq_0 y H4 H3); Intro H5; Rewrite H5 in H2; Elim (Rlt_antirefl R0 H2)]]. Qed. Lemma sqrt_lt_0 : (x,y:R) ``0<=x``->``0<=y``->``(sqrt x)<(sqrt y)``->``x``0<=y``->``x``(sqrt x)<(sqrt y)``. Intros x y H1 H2 H3; Apply Rsqr_incrst_0; [Rewrite (Rsqr_sqrt x H1); Rewrite (Rsqr_sqrt y H2); Assumption | Apply (sqrt_positivity x H1) | Apply (sqrt_positivity y H2)]. Qed. Lemma sqrt_le_0 : (x,y:R) ``0<=x``->``0<=y``->``(sqrt x)<=(sqrt y)``->``x<=y``. Intros x y H1 H2 H3; Generalize (Rsqr_incr_1 (sqrt x) (sqrt y) H3 (sqrt_positivity x H1) (sqrt_positivity y H2)); Intro H4; Rewrite (Rsqr_sqrt x H1) in H4; Rewrite (Rsqr_sqrt y H2) in H4; Assumption. Qed. Lemma sqrt_le_1 : (x,y:R) ``0<=x``->``0<=y``->``x<=y``->``(sqrt x)<=(sqrt y)``. Intros x y H1 H2 H3; Apply Rsqr_incr_0; [ Rewrite (Rsqr_sqrt x H1); Rewrite (Rsqr_sqrt y H2); Assumption | Apply (sqrt_positivity x H1) | Apply (sqrt_positivity y H2)]. Qed. Lemma sqrt_inj : (x,y:R) ``0<=x``->``0<=y``->(sqrt x)==(sqrt y)->x==y. Intros; Cut ``(Rsqr (sqrt x))==(Rsqr (sqrt y))``. Intro; Rewrite (Rsqr_sqrt x H) in H2; Rewrite (Rsqr_sqrt y H0) in H2; Assumption. Rewrite H1; Reflexivity. Qed. Lemma sqrt_less : (x:R) ``0<=x``->``1``(sqrt x)``x<1``->``x<(sqrt x)``. Intros x H1 H2; Generalize (sqrt_lt_1 x R1 (Rlt_le R0 x H1) (Rlt_le R0 R1 (Rlt_R0_R1)) H2); Intro H3; Rewrite sqrt_1 in H3; Generalize (Rmult_ne (sqrt x)); Intro H4; Elim H4; Intros H5 H6; Rewrite <- H5; Pattern 1 x; Rewrite <- (sqrt_def x (Rlt_le R0 x H1)); Apply (Rlt_monotony (sqrt x) (sqrt x) R1 (sqrt_lt_R0 x H1) H3). Qed. Lemma sqrt_cauchy : (a,b,c,d:R) ``a*c+b*d<=(sqrt ((Rsqr a)+(Rsqr b)))*(sqrt ((Rsqr c)+(Rsqr d)))``. Intros a b c d; Apply Rsqr_incr_0_var; [Rewrite Rsqr_times; Repeat Rewrite Rsqr_sqrt; Unfold Rsqr; [Replace ``(a*c+b*d)*(a*c+b*d)`` with ``(a*a*c*c+b*b*d*d)+(2*a*b*c*d)``; [Replace ``(a*a+b*b)*(c*c+d*d)`` with ``(a*a*c*c+b*b*d*d)+(a*a*d*d+b*b*c*c)``; [Apply Rle_compatibility; Replace ``a*a*d*d+b*b*c*c`` with ``(2*a*b*c*d)+(a*a*d*d+b*b*c*c-2*a*b*c*d)``; [Pattern 1 ``2*a*b*c*d``; Rewrite <- Rplus_Or; Apply Rle_compatibility; Replace ``a*a*d*d+b*b*c*c-2*a*b*c*d`` with (Rsqr (Rminus (Rmult a d) (Rmult b c))); [Apply pos_Rsqr | Unfold Rsqr; Ring] | Ring] | Ring] | Ring] | Apply (ge0_plus_ge0_is_ge0 (Rsqr c) (Rsqr d) (pos_Rsqr c) (pos_Rsqr d)) | Apply (ge0_plus_ge0_is_ge0 (Rsqr a) (Rsqr b) (pos_Rsqr a) (pos_Rsqr b))] | Apply Rmult_le_pos; Apply sqrt_positivity; Apply ge0_plus_ge0_is_ge0; Apply pos_Rsqr]. Qed. (************************************************************) (* Resolution of [a*X^2+b*X+c=0] *) (************************************************************) Definition Delta [a:nonzeroreal;b,c:R] : R := ``(Rsqr b)-4*a*c``. Definition Delta_is_pos [a:nonzeroreal;b,c:R] : Prop := ``0<=(Delta a b c)``. Definition sol_x1 [a:nonzeroreal;b,c:R] : R := ``(-b+(sqrt (Delta a b c)))/(2*a)``. Definition sol_x2 [a:nonzeroreal;b,c:R] : R := ``(-b-(sqrt (Delta a b c)))/(2*a)``. Lemma Rsqr_sol_eq_0_1 : (a:nonzeroreal;b,c,x:R) (Delta_is_pos a b c) -> (x==(sol_x1 a b c))\/(x==(sol_x2 a b c)) -> ``a*(Rsqr x)+b*x+c==0``. Intros; Elim H0; Intro. Unfold sol_x1 in H1; Unfold Delta in H1; Rewrite H1; Unfold Rdiv; Repeat Rewrite Rsqr_times; Rewrite Rsqr_plus; Rewrite <- Rsqr_neg; Rewrite Rsqr_sqrt. Rewrite Rsqr_inv. Unfold Rsqr; Repeat Rewrite Rinv_Rmult. Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym a). Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite Rmult_Rplus_distrl. Repeat Rewrite Rmult_assoc. Pattern 2 ``2``; Rewrite (Rmult_sym ``2``). Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Rewrite (Rmult_Rplus_distrl ``-b`` ``(sqrt (b*b-(2*(2*(a*c)))))`` ``(/2*/a)``). Rewrite Rmult_Rplus_distr; Repeat Rewrite Rplus_assoc. Replace ``( -b*((sqrt (b*b-(2*(2*(a*c)))))*(/2*/a))+(b*( -b*(/2*/a))+(b*((sqrt (b*b-(2*(2*(a*c)))))*(/2*/a))+c)))`` with ``(b*( -b*(/2*/a)))+c``. Unfold Rminus; Repeat Rewrite <- Rplus_assoc. Replace ``b*b+b*b`` with ``2*(b*b)``. Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc. Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Rewrite Ropp_mul1; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``). Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite (Rmult_sym ``/2``); Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``). Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Repeat Rewrite Rmult_assoc. Rewrite (Rmult_sym a); Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite <- Ropp_mul2. Ring. Apply (cond_nonzero a). DiscrR. DiscrR. DiscrR. Ring. Ring. DiscrR. Apply (cond_nonzero a). DiscrR. Apply (cond_nonzero a). Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)]. Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)]. Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)]. Assumption. Unfold sol_x2 in H1; Unfold Delta in H1; Rewrite H1; Unfold Rdiv; Repeat Rewrite Rsqr_times; Rewrite Rsqr_minus; Rewrite <- Rsqr_neg; Rewrite Rsqr_sqrt. Rewrite Rsqr_inv. Unfold Rsqr; Repeat Rewrite Rinv_Rmult; Repeat Rewrite Rmult_assoc. Rewrite (Rmult_sym a); Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Unfold Rminus; Rewrite Rmult_Rplus_distrl. Rewrite Ropp_mul1; Repeat Rewrite Rmult_assoc; Pattern 2 ``2``; Rewrite (Rmult_sym ``2``). Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite (Rmult_Rplus_distrl ``-b`` ``-(sqrt (b*b+ -(2*(2*(a*c))))) `` ``(/2*/a)``). Rewrite Rmult_Rplus_distr; Repeat Rewrite Rplus_assoc. Rewrite Ropp_mul1; Rewrite Ropp_Ropp. Replace ``(b*((sqrt (b*b+ -(2*(2*(a*c)))))*(/2*/a))+(b*( -b*(/2*/a))+(b*( -(sqrt (b*b+ -(2*(2*(a*c)))))*(/2*/a))+c)))`` with ``(b*( -b*(/2*/a)))+c``. Repeat Rewrite <- Rplus_assoc; Replace ``b*b+b*b`` with ``2*(b*b)``. Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Ropp_mul1; Repeat Rewrite Rmult_assoc. Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite (Rmult_sym ``/2``); Repeat Rewrite Rmult_assoc. Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym a); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r; Rewrite <- Ropp_mul2; Ring. Apply (cond_nonzero a). DiscrR. DiscrR. DiscrR. Ring. Ring. DiscrR. Apply (cond_nonzero a). DiscrR. DiscrR. Apply (cond_nonzero a). Apply prod_neq_R0; DiscrR Orelse Apply (cond_nonzero a). Apply prod_neq_R0; DiscrR Orelse Apply (cond_nonzero a). Apply prod_neq_R0; DiscrR Orelse Apply (cond_nonzero a). Assumption. Qed. Lemma Rsqr_sol_eq_0_0 : (a:nonzeroreal;b,c,x:R) (Delta_is_pos a b c) -> ``a*(Rsqr x)+b*x+c==0`` -> (x==(sol_x1 a b c))\/(x==(sol_x2 a b c)). Intros; Rewrite (canonical_Rsqr a b c x) in H0; Rewrite Rplus_sym in H0; Generalize (Rplus_Ropp ``(4*a*c-(Rsqr b))/(4*a)`` ``a*(Rsqr (x+b/(2*a)))`` H0); Cut ``(Rsqr b)-4*a*c==(Delta a b c)``. Intro; Replace ``-((4*a*c-(Rsqr b))/(4*a))`` with ``((Rsqr b)-4*a*c)/(4*a)``. Rewrite H1; Intro; Generalize (Rmult_mult_r ``/a`` ``a*(Rsqr (x+b/(2*a)))`` ``(Delta a b c)/(4*a)`` H2); Replace ``/a*(a*(Rsqr (x+b/(2*a))))`` with ``(Rsqr (x+b/(2*a)))``. Replace ``/a*(Delta a b c)/(4*a)`` with ``(Rsqr ((sqrt (Delta a b c))/(2*a)))``. Intro; Generalize (Rsqr_eq ``(x+b/(2*a))`` ``((sqrt (Delta a b c))/(2*a))`` H3); Intro; Elim H4; Intro. Left; Unfold sol_x1; Generalize (Rplus_plus_r ``-(b/(2*a))`` ``x+b/(2*a)`` ``(sqrt (Delta a b c))/(2*a)`` H5); Replace `` -(b/(2*a))+(x+b/(2*a))`` with x. Intro; Rewrite H6; Unfold Rdiv; Ring. Ring. Right; Unfold sol_x2; Generalize (Rplus_plus_r ``-(b/(2*a))`` ``x+b/(2*a)`` ``-((sqrt (Delta a b c))/(2*a))`` H5); Replace `` -(b/(2*a))+(x+b/(2*a))`` with x. Intro; Rewrite H6; Unfold Rdiv; Ring. Ring. Rewrite Rsqr_div. Rewrite Rsqr_sqrt. Unfold Rdiv. Repeat Rewrite Rmult_assoc. Rewrite (Rmult_sym ``/a``). Rewrite Rmult_assoc. Rewrite <- Rinv_Rmult. Replace ``(2*(2*a))*a`` with ``(Rsqr (2*a))``. Reflexivity. SqRing. Rewrite <- Rmult_assoc; Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)]. Apply (cond_nonzero a). Assumption. Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)]. Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. Symmetry; Apply Rmult_1l. Apply (cond_nonzero a). Unfold Rdiv; Rewrite <- Ropp_mul1. Rewrite Ropp_distr2. Reflexivity. Reflexivity. Qed.