(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ~``x==0``. Intros; Red; Intro; Rewrite H0 in H; Rewrite Rsqr_O in H; Elim (Rlt_antirefl ``0`` H). Qed. Lemma Rsqr_pos_lt : (x:R) ~(x==R0)->``0<(Rsqr x)``. Intros; Case (total_order R0 x); Intro; [Unfold Rsqr; Apply Rmult_lt_pos; Assumption | Elim H0; Intro; [Elim H; Symmetry; Exact H1 | Rewrite Rsqr_neg; Generalize (Rlt_Ropp x ``0`` H1); Rewrite Ropp_O; Intro; Unfold Rsqr; Apply Rmult_lt_pos; Assumption]]. Qed. Lemma Rsqr_div : (x,y:R) ~``y==0`` -> ``(Rsqr (x/y))==(Rsqr x)/(Rsqr y)``. Intros; Unfold Rsqr. Unfold Rdiv. Rewrite Rinv_Rmult. Repeat Rewrite Rmult_assoc. Apply Rmult_mult_r. Pattern 2 x; Rewrite Rmult_sym. Repeat Rewrite Rmult_assoc. Apply Rmult_mult_r. Reflexivity. Assumption. Assumption. Qed. Lemma Rsqr_eq_0 : (x:R) ``(Rsqr x)==0`` -> ``x==0``. Unfold Rsqr; Intros; Generalize (without_div_Od x x H); Intro; Elim H0; Intro ; Assumption. Qed. Lemma Rsqr_minus_plus : (a,b:R) ``(a-b)*(a+b)==(Rsqr a)-(Rsqr b)``. Intros; SqRing. Qed. Lemma Rsqr_plus_minus : (a,b:R) ``(a+b)*(a-b)==(Rsqr a)-(Rsqr b)``. Intros; SqRing. Qed. Lemma Rsqr_incr_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)`` -> ``0<=x`` -> ``0<=y`` -> ``x<=y``. Intros; Case (total_order_Rle x y); Intro; [Assumption | Cut ``y ``0<=y`` -> ``x<=y``. Intros; Case (total_order_Rle x y); Intro; [Assumption | Cut ``y``0<=x``->``0<= y``->``(Rsqr x)<=(Rsqr y)``. Intros; Unfold Rsqr; Apply Rle_Rmult_comp; Assumption. Qed. Lemma Rsqr_incrst_0 : (x,y:R) ``(Rsqr x)<(Rsqr y)``->``0<=x``->``0<=y``-> ``x``0<=x``->``0<=y``->``(Rsqr x)<(Rsqr y)``. Intros; Unfold Rsqr; Apply Rmult_lt2; Assumption. Qed. Lemma Rsqr_neg_pos_le_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)``->``0<=y``->``-y<=x``. Intros; Case (case_Rabsolu x); Intro. Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Rewrite (Rsqr_neg x) in H; Generalize (Rsqr_incr_0 (Ropp x) y H H2 H0); Intro; Rewrite <- (Ropp_Ropp x); Apply Rge_Ropp; Apply Rle_sym1; Assumption. Apply Rle_trans with ``0``; [Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Assumption | Apply Rle_sym2; Assumption]. Qed. Lemma Rsqr_neg_pos_le_1 : (x,y:R) ``(-y)<=x`` -> ``x<=y`` -> ``0<=y`` -> ``(Rsqr x)<=(Rsqr y)``. Intros; Case (case_Rabsolu x); Intro. Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H2); Intro; Generalize (Rle_Ropp ``-y`` x H); Rewrite Ropp_Ropp; Intro; Generalize (Rle_sym2 ``-x`` y H4); Intro; Rewrite (Rsqr_neg x); Apply Rsqr_incr_1; Assumption. Generalize (Rle_sym2 ``0`` x r); Intro; Apply Rsqr_incr_1; Assumption. Qed. Lemma neg_pos_Rsqr_le : (x,y:R) ``(-y)<=x``->``x<=y``->``(Rsqr x)<=(Rsqr y)``. Intros; Case (case_Rabsolu x); Intro. Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rle_Ropp ``-y`` x H); Rewrite Ropp_Ropp; Intro; Generalize (Rle_sym2 ``-x`` y H2); Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Generalize (Rle_trans ``0`` ``-x`` y H4 H3); Intro; Rewrite (Rsqr_neg x); Apply Rsqr_incr_1; Assumption. Generalize (Rle_sym2 ``0`` x r); Intro; Generalize (Rle_trans ``0`` x y H1 H0); Intro; Apply Rsqr_incr_1; Assumption. Qed. Lemma Rsqr_abs : (x:R) ``(Rsqr x)==(Rsqr (Rabsolu x))``. Intro; Unfold Rabsolu; Case (case_Rabsolu x); Intro; [Apply Rsqr_neg | Reflexivity]. Qed. Lemma Rsqr_le_abs_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)`` -> ``(Rabsolu x)<=(Rabsolu y)``. Intros; Apply Rsqr_incr_0; Repeat Rewrite <- Rsqr_abs; [Assumption | Apply Rabsolu_pos | Apply Rabsolu_pos]. Qed. Lemma Rsqr_le_abs_1 : (x,y:R) ``(Rabsolu x)<=(Rabsolu y)`` -> ``(Rsqr x)<=(Rsqr y)``. Intros; Rewrite (Rsqr_abs x); Rewrite (Rsqr_abs y); Apply (Rsqr_incr_1 (Rabsolu x) (Rabsolu y) H (Rabsolu_pos x) (Rabsolu_pos y)). Qed. Lemma Rsqr_lt_abs_0 : (x,y:R) ``(Rsqr x)<(Rsqr y)`` -> ``(Rabsolu x)<(Rabsolu y)``. Intros; Apply Rsqr_incrst_0; Repeat Rewrite <- Rsqr_abs; [Assumption | Apply Rabsolu_pos | Apply Rabsolu_pos]. Qed. Lemma Rsqr_lt_abs_1 : (x,y:R) ``(Rabsolu x)<(Rabsolu y)`` -> ``(Rsqr x)<(Rsqr y)``. Intros; Rewrite (Rsqr_abs x); Rewrite (Rsqr_abs y); Apply (Rsqr_incrst_1 (Rabsolu x) (Rabsolu y) H (Rabsolu_pos x) (Rabsolu_pos y)). Qed. Lemma Rsqr_inj : (x,y:R) ``0<=x`` -> ``0<=y`` -> (Rsqr x)==(Rsqr y) -> x==y. Intros; Generalize (Rle_le_eq (Rsqr x) (Rsqr y)); Intro; Elim H2; Intros _ H3; Generalize (H3 H1); Intro; Elim H4; Intros; Apply Rle_antisym; Apply Rsqr_incr_0; Assumption. Qed. Lemma Rsqr_eq_abs_0 : (x,y:R) (Rsqr x)==(Rsqr y) -> (Rabsolu x)==(Rabsolu y). Intros; Unfold Rabsolu; Case (case_Rabsolu x); Case (case_Rabsolu y); Intros. Rewrite -> (Rsqr_neg x) in H; Rewrite -> (Rsqr_neg y) in H; Generalize (Rlt_Ropp y ``0`` r); Generalize (Rlt_Ropp x ``0`` r0); Rewrite Ropp_O; Intros; Generalize (Rlt_le ``0`` ``-x`` H0); Generalize (Rlt_le ``0`` ``-y`` H1); Intros; Apply Rsqr_inj; Assumption. Rewrite -> (Rsqr_neg x) in H; Generalize (Rle_sym2 ``0`` y r); Intro; Generalize (Rlt_Ropp x ``0`` r0); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Apply Rsqr_inj; Assumption. Rewrite -> (Rsqr_neg y) in H; Generalize (Rle_sym2 ``0`` x r0); Intro; Generalize (Rlt_Ropp y ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-y`` H1); Intro; Apply Rsqr_inj; Assumption. Generalize (Rle_sym2 ``0`` x r0); Generalize (Rle_sym2 ``0`` y r); Intros; Apply Rsqr_inj; Assumption. Qed. Lemma Rsqr_eq_asb_1 : (x,y:R) (Rabsolu x)==(Rabsolu y) -> (Rsqr x)==(Rsqr y). Intros; Cut ``(Rsqr (Rabsolu x))==(Rsqr (Rabsolu y))``. Intro; Repeat Rewrite <- Rsqr_abs in H0; Assumption. Rewrite H; Reflexivity. Qed. Lemma triangle_rectangle : (x,y,z:R) ``0<=z``->``(Rsqr x)+(Rsqr y)<=(Rsqr z)``->``-z<=x<=z`` /\``-z<=y<=z``. Intros; Generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H0); Rewrite Rplus_sym in H0; Generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H0); Intros; Split; [Split; [Apply Rsqr_neg_pos_le_0; Assumption | Apply Rsqr_incr_0_var; Assumption] | Split; [Apply Rsqr_neg_pos_le_0; Assumption | Apply Rsqr_incr_0_var; Assumption]]. Qed. Lemma triangle_rectangle_lt : (x,y,z:R) ``(Rsqr x)+(Rsqr y)<(Rsqr z)`` -> ``(Rabsolu x)<(Rabsolu z)``/\``(Rabsolu y)<(Rabsolu z)``. Intros; Split; [Generalize (plus_lt_is_lt (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H); Intro; Apply Rsqr_lt_abs_0; Assumption | Rewrite Rplus_sym in H; Generalize (plus_lt_is_lt (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H); Intro; Apply Rsqr_lt_abs_0; Assumption]. Qed. Lemma triangle_rectangle_le : (x,y,z:R) ``(Rsqr x)+(Rsqr y)<=(Rsqr z)`` -> ``(Rabsolu x)<=(Rabsolu z)``/\``(Rabsolu y)<=(Rabsolu z)``. Intros; Split; [Generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H); Intro; Apply Rsqr_le_abs_0; Assumption | Rewrite Rplus_sym in H; Generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H); Intro; Apply Rsqr_le_abs_0; Assumption]. Qed. Lemma Rsqr_inv : (x:R) ~``x==0`` -> ``(Rsqr (/x))==/(Rsqr x)``. Intros; Unfold Rsqr. Rewrite Rinv_Rmult; Try Reflexivity Orelse Assumption. Qed. Lemma canonical_Rsqr : (a:nonzeroreal;b,c,x:R) ``a*(Rsqr x)+b*x+c == a* (Rsqr (x+b/(2*a))) + (4*a*c - (Rsqr b))/(4*a)``. Intros. Rewrite Rsqr_plus. Repeat Rewrite Rmult_Rplus_distr. Repeat Rewrite Rplus_assoc. Apply Rplus_plus_r. Unfold Rdiv Rminus. Replace ``2*1+2*1`` with ``4``; [Idtac | Ring]. Rewrite (Rmult_Rplus_distrl ``4*a*c`` ``-(Rsqr b)`` ``/(4*a)``). Rewrite Rsqr_times. Repeat Rewrite Rinv_Rmult. Repeat Rewrite (Rmult_sym a). Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Rewrite (Rmult_sym ``2``). Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Rewrite (Rmult_sym ``/2``). Rewrite (Rmult_sym ``2``). Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Rewrite (Rmult_sym a). Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Rewrite (Rmult_sym ``2``). Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Repeat Rewrite Rplus_assoc. Rewrite (Rplus_sym ``(Rsqr b)*((Rsqr (/a*/2))*a)``). Repeat Rewrite Rplus_assoc. Rewrite (Rmult_sym x). Apply Rplus_plus_r. Rewrite (Rmult_sym ``/a``). Unfold Rsqr; Repeat Rewrite Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1r. Ring. Apply (cond_nonzero a). DiscrR. Apply (cond_nonzero a). DiscrR. DiscrR. Apply (cond_nonzero a). DiscrR. DiscrR. DiscrR. Apply (cond_nonzero a). DiscrR. Apply (cond_nonzero a). Qed. Lemma Rsqr_eq : (x,y:R) (Rsqr x)==(Rsqr y) -> x==y \/ x==``-y``. Intros; Unfold Rsqr in H; Generalize (Rplus_plus_r ``-(y*y)`` ``x*x`` ``y*y`` H); Rewrite Rplus_Ropp_l; Replace ``-(y*y)+x*x`` with ``(x-y)*(x+y)``. Intro; Generalize (without_div_Od ``x-y`` ``x+y`` H0); Intro; Elim H1; Intros. Left; Apply Rminus_eq; Assumption. Right; Apply Rminus_eq; Unfold Rminus; Rewrite Ropp_Ropp; Assumption. Ring. Qed.