(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ``r1<>r2``. Red; Intros r1 r2 H H0; Apply (Rlt_antirefl r1). Pattern 2 r1; Rewrite H0; Trivial. Qed. Lemma Rgt_not_eq:(r1,r2:R)``r1>r2``->``r1<>r2``. Intros; Apply sym_not_eqT; Apply Rlt_not_eq; Auto with real. Qed. (**********) Lemma imp_not_Req:(r1,r2:R)(``r1r2``) -> ``r1<>r2``. Generalize Rlt_not_eq Rgt_not_eq. Intuition EAuto. Qed. Hints Resolve imp_not_Req : real. (** Reasoning by case on equalities and order *) (**********) Lemma Req_EM:(r1,r2:R)(r1==r2)\/``r1<>r2``. Intros ; Generalize (total_order_T r1 r2) imp_not_Req ; Intuition EAuto 3. Qed. Hints Resolve Req_EM : real. (**********) Lemma total_order:(r1,r2:R)``r1r2``. Intros;Generalize (total_order_T r1 r2);Tauto. Qed. (**********) Lemma not_Req:(r1,r2:R)``r1<>r2``->(``r1r2``). Intros; Generalize (total_order_T r1 r2) ; Tauto. Qed. (*********************************************************************************) (** Order Lemma : relating [<], [>], [<=] and [>=] *) (*********************************************************************************) (**********) Lemma Rlt_le:(r1,r2:R)``r1 ``r1<=r2``. Intros ; Red ; Tauto. Qed. Hints Resolve Rlt_le : real. (**********) Lemma Rle_ge : (r1,r2:R)``r1<=r2`` -> ``r2>=r1``. NewDestruct 1; Red; Auto with real. Qed. Hints Immediate Rle_ge : real. (**********) Lemma Rge_le : (r1,r2:R)``r1>=r2`` -> ``r2<=r1``. NewDestruct 1; Red; Auto with real. Qed. Hints Resolve Rge_le : real. (**********) Lemma not_Rle:(r1,r2:R)~``r1<=r2`` -> ``r2=r2`` -> ``r1 ~``r1<=r2``. Generalize Rlt_antisym imp_not_Req ; Unfold Rle. Intuition EAuto 3. Qed. Lemma Rle_not:(r1,r2:R)``r1>r2`` -> ~``r1<=r2``. Proof Rlt_le_not. Hints Immediate Rlt_le_not : real. Lemma Rle_not_lt: (r1, r2:R) ``r2 <= r1`` -> ~``r1 ~``r1>=r2``. Generalize Rlt_le_not. Unfold Rle Rge. Intuition EAuto 3. Qed. Hints Immediate Rlt_ge_not : real. (**********) Lemma eq_Rle:(r1,r2:R)r1==r2->``r1<=r2``. Unfold Rle; Tauto. Qed. Hints Immediate eq_Rle : real. Lemma eq_Rge:(r1,r2:R)r1==r2->``r1>=r2``. Unfold Rge; Tauto. Qed. Hints Immediate eq_Rge : real. Lemma eq_Rle_sym:(r1,r2:R)r2==r1->``r1<=r2``. Unfold Rle; Auto. Qed. Hints Immediate eq_Rle_sym : real. Lemma eq_Rge_sym:(r1,r2:R)r2==r1->``r1>=r2``. Unfold Rge; Auto. Qed. Hints Immediate eq_Rge_sym : real. Lemma Rle_antisym : (r1,r2:R)``r1<=r2`` -> ``r2<=r1``-> r1==r2. Intros r1 r2; Generalize (Rlt_antisym r1 r2) ; Unfold Rle ; Intuition. Qed. Hints Resolve Rle_antisym : real. (**********) Lemma Rle_le_eq:(r1,r2:R)(``r1<=r2``/\``r2<=r1``)<->(r1==r2). Intuition. Qed. Lemma Rlt_rew : (x,x',y,y':R)``x==x'``->``x' `` y' == y`` -> ``x < y``. Intros x x' y y'; Intros; Replace x with x'; Replace y with y'; Assumption. Qed. (**********) Lemma Rle_trans:(r1,r2,r3:R) ``r1<=r2``->``r2<=r3``->``r1<=r3``. Generalize trans_eqT Rlt_trans Rlt_rew. Unfold Rle. Intuition EAuto 2. Qed. (**********) Lemma Rle_lt_trans:(r1,r2,r3:R)``r1<=r2``->``r2``r1``r2<=r3``->``r1r2`` ~(``r1>r2``)). Intros;Unfold Rgt;Intros;Apply total_order_Rlt. Qed. (**********) Lemma total_order_Rge:(r1,r2:R)(sumboolT (``r1>=r2``) ~(``r1>=r2``)). Intros;Generalize (total_order_Rle r2 r1);Intuition. Qed. Lemma total_order_Rlt_Rle:(r1,r2:R)(sumboolT ``r1 (sumboolT ``r1 (sumboolT ``n<=m``y== -x``. Intros x y H; Replace y with ``(-x+x)+y``; [ Rewrite -> Rplus_assoc; Rewrite -> H; Ring | Ring ]. Qed. (*i New i*) Hint eqT_R_congr : real := Resolve (congr_eqT R). Lemma Rplus_plus_r:(r,r1,r2:R)(r1==r2)->``r+r1==r+r2``. Auto with real. Qed. (*i Old i*)Hints Resolve Rplus_plus_r : v62. (**********) Lemma r_Rplus_plus:(r,r1,r2:R)``r+r1==r+r2``->r1==r2. Intros; Transitivity ``(-r+r)+r1``. Ring. Transitivity ``(-r+r)+r2``. Repeat Rewrite -> Rplus_assoc; Rewrite <- H; Reflexivity. Ring. Qed. Hints Resolve r_Rplus_plus : real. (**********) Lemma Rplus_ne_i:(r,b:R)``r+b==r`` -> ``b==0``. Intros r b; Pattern 2 r; Replace r with ``r+0``; EAuto with real. Qed. (***********************************************************) (** Multiplication *) (***********************************************************) (**********) Lemma Rinv_r:(r:R)``r<>0``->``r* (/r)==1``. Intros; Rewrite -> Rmult_sym; Auto with real. Qed. Hints Resolve Rinv_r : real. Lemma Rinv_l_sym:(r:R)``r<>0``->``1==(/r) * r``. Symmetry; Auto with real. Qed. Lemma Rinv_r_sym:(r:R)``r<>0``->``1==r* (/r)``. Symmetry; Auto with real. Qed. Hints Resolve Rinv_l_sym Rinv_r_sym : real. (**********) Lemma Rmult_Or :(r:R) ``r*0==0``. Intro; Ring. Qed. Hints Resolve Rmult_Or : real v62. (**********) Lemma Rmult_Ol:(r:R) ``0*r==0``. Intro; Ring. Qed. Hints Resolve Rmult_Ol : real v62. (**********) Lemma Rmult_ne:(r:R)``r*1==r``/\``1*r==r``. Intro;Split;Ring. Qed. Hints Resolve Rmult_ne : real v62. (**********) Lemma Rmult_1r:(r:R)(``r*1==r``). Intro; Ring. Qed. Hints Resolve Rmult_1r : real. (**********) Lemma Rmult_mult_r:(r,r1,r2:R)r1==r2->``r*r1==r*r2``. Auto with real. Qed. (*i OLD i*)Hints Resolve Rmult_mult_r : v62. (**********) Lemma r_Rmult_mult:(r,r1,r2:R)(``r*r1==r*r2``)->``r<>0``->(r1==r2). Intros; Transitivity ``(/r * r)*r1``. Rewrite Rinv_l; Auto with real. Transitivity ``(/r * r)*r2``. Repeat Rewrite Rmult_assoc; Rewrite H; Trivial. Rewrite Rinv_l; Auto with real. Qed. (**********) Lemma without_div_Od:(r1,r2:R)``r1*r2==0`` -> ``r1==0`` \/ ``r2==0``. Intros; Case (Req_EM r1 ``0``); [Intro Hz | Intro Hnotz]. Auto. Right; Apply r_Rmult_mult with r1; Trivial. Rewrite H; Auto with real. Qed. (**********) Lemma without_div_Oi:(r1,r2:R) ``r1==0``\/``r2==0`` -> ``r1*r2==0``. Intros r1 r2 [H | H]; Rewrite H; Auto with real. Qed. Hints Resolve without_div_Oi : real. (**********) Lemma without_div_Oi1:(r1,r2:R) ``r1==0`` -> ``r1*r2==0``. Auto with real. Qed. (**********) Lemma without_div_Oi2:(r1,r2:R) ``r2==0`` -> ``r1*r2==0``. Auto with real. Qed. (**********) Lemma without_div_O_contr:(r1,r2:R)``r1*r2<>0`` -> ``r1<>0`` /\ ``r2<>0``. Intros r1 r2 H; Split; Red; Intro; Apply H; Auto with real. Qed. (**********) Lemma mult_non_zero :(r1,r2:R)``r1<>0`` /\ ``r2<>0`` -> ``r1*r2<>0``. Red; Intros r1 r2 (H1,H2) H. Case (without_div_Od r1 r2); Auto with real. Qed. Hints Resolve mult_non_zero : real. (**********) Lemma Rmult_Rplus_distrl: (r1,r2,r3:R) ``(r1+r2)*r3 == (r1*r3)+(r2*r3)``. Intros; Ring. Qed. (** Square function *) (***********) Definition Rsqr:R->R:=[r:R]``r*r``. V7only[Notation "x ²" := (Rsqr x) (at level 2,left associativity).]. (***********) Lemma Rsqr_O:(Rsqr ``0``)==``0``. Unfold Rsqr; Auto with real. Qed. (***********) Lemma Rsqr_r_R0:(r:R)(Rsqr r)==``0``->``r==0``. Unfold Rsqr;Intros;Elim (without_div_Od r r H);Trivial. Qed. (*********************************************************) (** Opposite *) (*********************************************************) (**********) Lemma eq_Ropp:(r1,r2:R)(r1==r2)->``-r1 == -r2``. Auto with real. Qed. Hints Resolve eq_Ropp : real. (**********) Lemma Ropp_O:``-0==0``. Ring. Qed. Hints Resolve Ropp_O : real v62. (**********) Lemma eq_RoppO:(r:R)``r==0``-> ``-r==0``. Intros; Rewrite -> H; Auto with real. Qed. Hints Resolve eq_RoppO : real. (**********) Lemma Ropp_Ropp:(r:R)``-(-r)==r``. Intro; Ring. Qed. Hints Resolve Ropp_Ropp : real. (*********) Lemma Ropp_neq:(r:R)``r<>0``->``-r<>0``. Red;Intros r H H0. Apply H. Transitivity ``-(-r)``; Auto with real. Qed. Hints Resolve Ropp_neq : real. (**********) Lemma Ropp_distr1:(r1,r2:R)``-(r1+r2)==(-r1 + -r2)``. Intros; Ring. Qed. Hints Resolve Ropp_distr1 : real. (** Opposite and multiplication *) Lemma Ropp_mul1:(r1,r2:R)``(-r1)*r2 == -(r1*r2)``. Intros; Ring. Qed. Hints Resolve Ropp_mul1 : real. (**********) Lemma Ropp_mul2:(r1,r2:R)``(-r1)*(-r2)==r1*r2``. Intros; Ring. Qed. Hints Resolve Ropp_mul2 : real. Lemma Ropp_mul3 : (r1,r2:R) ``r1*(-r2) == -(r1*r2)``. Intros; Rewrite <- Ropp_mul1; Ring. Qed. (** Substraction *) Lemma minus_R0:(r:R)``r-0==r``. Intro;Ring. Qed. Hints Resolve minus_R0 : real. Lemma Rminus_Ropp:(r:R)``0-r==-r``. Intro;Ring. Qed. Hints Resolve Rminus_Ropp : real. (**********) Lemma Ropp_distr2:(r1,r2:R)``-(r1-r2)==r2-r1``. Intros; Ring. Qed. Hints Resolve Ropp_distr2 : real. Lemma Ropp_distr3:(r1,r2:R)``-(r2-r1)==r1-r2``. Intros; Ring. Qed. Hints Resolve Ropp_distr3 : real. (**********) Lemma eq_Rminus:(r1,r2:R)(r1==r2)->``r1-r2==0``. Intros; Rewrite H; Ring. Qed. Hints Resolve eq_Rminus : real. (**********) Lemma Rminus_eq:(r1,r2:R)``r1-r2==0`` -> r1==r2. Intros r1 r2; Unfold Rminus; Rewrite -> Rplus_sym; Intro. Rewrite <- (Ropp_Ropp r2); Apply (Rplus_Ropp (Ropp r2) r1 H). Qed. Hints Immediate Rminus_eq : real. Lemma Rminus_eq_right:(r1,r2:R)``r2-r1==0`` -> r1==r2. Intros;Generalize (Rminus_eq r2 r1 H);Clear H;Intro H;Rewrite H;Ring. Qed. Hints Immediate Rminus_eq_right : real. Lemma Rplus_Rminus: (p,q:R)``p+(q-p)``==q. Intros; Ring. Qed. Hints Resolve Rplus_Rminus:real. (**********) Lemma Rminus_eq_contra:(r1,r2:R)``r1<>r2``->``r1-r2<>0``. Red; Intros r1 r2 H H0. Apply H; Auto with real. Qed. Hints Resolve Rminus_eq_contra : real. Lemma Rminus_not_eq:(r1,r2:R)``r1-r2<>0``->``r1<>r2``. Red; Intros; Elim H; Apply eq_Rminus; Auto. Qed. Hints Resolve Rminus_not_eq : real. Lemma Rminus_not_eq_right:(r1,r2:R)``r2-r1<>0`` -> ``r1<>r2``. Red; Intros;Elim H;Rewrite H0; Ring. Qed. Hints Resolve Rminus_not_eq_right : real. V7only [Notation not_sym := (sym_not_eq R).]. (**********) Lemma Rminus_distr: (x,y,z:R) ``x*(y-z)==(x*y) - (x*z)``. Intros; Ring. Qed. (** Inverse *) Lemma Rinv_R1:``/1==1``. Field;Auto with real. Qed. Hints Resolve Rinv_R1 : real. (*********) Lemma Rinv_neq_R0:(r:R)``r<>0``->``(/r)<>0``. Red; Intros; Apply R1_neq_R0. Replace ``1`` with ``(/r) * r``; Auto with real. Qed. Hints Resolve Rinv_neq_R0 : real. (*********) Lemma Rinv_Rinv:(r:R)``r<>0``->``/(/r)==r``. Intros;Field;Auto with real. Qed. Hints Resolve Rinv_Rinv : real. (*********) Lemma Rinv_Rmult:(r1,r2:R)``r1<>0``->``r2<>0``->``/(r1*r2)==(/r1)*(/r2)``. Intros;Field;Auto with real. Qed. (*********) Lemma Ropp_Rinv:(r:R)``r<>0``->``-(/r)==/(-r)``. Intros;Field;Auto with real. Qed. Lemma Rinv_r_simpl_r : (r1,r2:R)``r1<>0``->``r1*(/r1)*r2==r2``. Intros; Transitivity ``1*r2``; Auto with real. Rewrite Rinv_r; Auto with real. Qed. Lemma Rinv_r_simpl_l : (r1,r2:R)``r1<>0``->``r2*r1*(/r1)==r2``. Intros; Transitivity ``r2*1``; Auto with real. Transitivity ``r2*(r1*/r1)``; Auto with real. Qed. Lemma Rinv_r_simpl_m : (r1,r2:R)``r1<>0``->``r1*r2*(/r1)==r2``. Intros; Transitivity ``r2*1``; Auto with real. Transitivity ``r2*(r1*/r1)``; Auto with real. Ring. Qed. Hints Resolve Rinv_r_simpl_l Rinv_r_simpl_r Rinv_r_simpl_m : real. (*********) Lemma Rinv_Rmult_simpl:(a,b,c:R)``a<>0``->``(a*(/b))*(c*(/a))==c*(/b)``. Intros a b c; Intros. Transitivity ``(a*/a)*(c*(/b))``; Auto with real. Ring. Qed. (** Order and addition *) Lemma Rlt_compatibility_r:(r,r1,r2:R)``r1``r1+r ``r1 Rplus_Ropp_l. Elim (Rplus_ne r1); Elim (Rplus_ne r2); Intros; Rewrite <- H3; Rewrite <- H1; Auto with zarith real. Rewrite -> Rplus_assoc; Rewrite -> Rplus_assoc; Apply (Rlt_compatibility ``-r`` ``r+r1`` ``r+r2`` H). Qed. (**********) Lemma Rle_compatibility:(r,r1,r2:R)``r1<=r2`` -> ``r+r1 <= r+r2 ``. Unfold Rle; Intros; Elim H; Intro. Left; Apply (Rlt_compatibility r r1 r2 H0). Right; Rewrite <- H0; Auto with zarith real. Qed. (**********) Lemma Rle_compatibility_r:(r,r1,r2:R)``r1<=r2`` -> ``r1+r<=r2+r``. Unfold Rle; Intros; Elim H; Intro. Left; Apply (Rlt_compatibility_r r r1 r2 H0). Right; Rewrite <- H0; Auto with real. Qed. Hints Resolve Rle_compatibility Rle_compatibility_r : real. (**********) Lemma Rle_anti_compatibility: (r,r1,r2:R)``r+r1<=r+r2`` -> ``r1<=r2``. Unfold Rle; Intros; Elim H; Intro. Left; Apply (Rlt_anti_compatibility r r1 r2 H0). Right; Apply (r_Rplus_plus r r1 r2 H0). Qed. (**********) Lemma sum_inequa_Rle_lt:(a,x,b,c,y,d:R)``a<=x`` -> ``x ``c ``y<=d`` -> ``a+c < x+y < b+d``. Intros;Split. Apply Rlt_le_trans with ``a+y``; Auto with real. Apply Rlt_le_trans with ``b+y``; Auto with real. Qed. (*********) Lemma Rplus_lt:(r1,r2,r3,r4:R)``r1 ``r3 ``r1+r3 < r2+r4``. Intros; Apply Rlt_trans with ``r2+r3``; Auto with real. Qed. Lemma Rplus_le:(r1,r2,r3,r4:R)``r1<=r2`` -> ``r3<=r4`` -> ``r1+r3 <= r2+r4``. Intros; Apply Rle_trans with ``r2+r3``; Auto with real. Qed. (*********) Lemma Rplus_lt_le_lt:(r1,r2,r3,r4:R)``r1 ``r3<=r4`` -> ``r1+r3 < r2+r4``. Intros; Apply Rlt_le_trans with ``r2+r3``; Auto with real. Qed. (*********) Lemma Rplus_le_lt_lt:(r1,r2,r3,r4:R)``r1<=r2`` -> ``r3 ``r1+r3 < r2+r4``. Intros; Apply Rle_lt_trans with ``r2+r3``; Auto with real. Qed. Hints Immediate Rplus_lt Rplus_le Rplus_lt_le_lt Rplus_le_lt_lt : real. (** Order and Opposite *) (**********) Lemma Rgt_Ropp:(r1,r2:R) ``r1 > r2`` -> ``-r1 < -r2``. Unfold Rgt; Intros. Apply (Rlt_anti_compatibility ``r2+r1``). Replace ``r2+r1+(-r1)`` with r2. Replace ``r2+r1+(-r2)`` with r1. Trivial. Ring. Ring. Qed. Hints Resolve Rgt_Ropp. (**********) Lemma Rlt_Ropp:(r1,r2:R) ``r1 < r2`` -> ``-r1 > -r2``. Unfold Rgt; Auto with real. Qed. Hints Resolve Rlt_Ropp : real. Lemma Ropp_Rlt: (x,y:R) ``-y < -x`` ->``x ``-r1 < -r2``. Auto with real. Qed. Hints Resolve Rlt_Ropp1 : real. (**********) Lemma Rle_Ropp:(r1,r2:R) ``r1 <= r2`` -> ``-r1 >= -r2``. Unfold Rge; Intros r1 r2 [H|H]; Auto with real. Qed. Hints Resolve Rle_Ropp : real. Lemma Ropp_Rle: (x,y:R) ``-y <= -x`` ->``x <= y``. Intros x y H. Elim H;Auto with real. Intro H1;Rewrite <-(Ropp_Ropp x);Rewrite <-(Ropp_Ropp y);Rewrite H1; Auto with real. Qed. Hints Immediate Ropp_Rle : real. Lemma Rle_Ropp1:(r1,r2:R) ``r2 <= r1`` -> ``-r1 <= -r2``. Intros r1 r2 H;Elim H;Auto with real. Qed. Hints Resolve Rle_Ropp1 : real. (**********) Lemma Rge_Ropp:(r1,r2:R) ``r1 >= r2`` -> ``-r1 <= -r2``. Unfold Rge; Intros r1 r2 [H|H]; Auto with real. Qed. Hints Resolve Rge_Ropp : real. (**********) Lemma Rlt_RO_Ropp:(r:R) ``0 < r`` -> ``0 > -r``. Intros; Replace ``0`` with ``-0``; Auto with real. Qed. Hints Resolve Rlt_RO_Ropp : real. (**********) Lemma Rgt_RO_Ropp:(r:R) ``0 > r`` -> ``0 < -r``. Intros; Replace ``0`` with ``-0``; Auto with real. Qed. Hints Resolve Rgt_RO_Ropp : real. (**********) Lemma Rgt_RoppO:(r:R)``r>0``->``(-r)<0``. Intros; Rewrite <- Ropp_O; Auto with real. Qed. (**********) Lemma Rlt_RoppO:(r:R)``r<0``->``-r>0``. Intros; Rewrite <- Ropp_O; Auto with real. Qed. Hints Resolve Rgt_RoppO Rlt_RoppO: real. (**********) Lemma Rle_RO_Ropp:(r:R) ``0 <= r`` -> ``0 >= -r``. Intros; Replace ``0`` with ``-0``; Auto with real. Qed. Hints Resolve Rle_RO_Ropp : real. (**********) Lemma Rge_RO_Ropp:(r:R) ``0 >= r`` -> ``0 <= -r``. Intros; Replace ``0`` with ``-0``; Auto with real. Qed. Hints Resolve Rge_RO_Ropp : real. (** Order and multiplication *) Lemma Rlt_monotony_r:(r,r1,r2:R)``0 ``r1 < r2`` -> ``r1*r < r2*r``. Intros; Rewrite (Rmult_sym r1 r); Rewrite (Rmult_sym r2 r); Auto with real. Qed. Hints Resolve Rlt_monotony_r. Lemma Rlt_monotony_contra: (z, x, y:R) ``0``z*x``x ``r1 < r2`` -> ``r*r1 > r*r2``. Intros; Replace r with ``-(-r)``; Auto with real. Rewrite (Ropp_mul1 ``-r``); Rewrite (Ropp_mul1 ``-r``). Apply Rlt_Ropp; Auto with real. Qed. (**********) Lemma Rle_monotony: (r,r1,r2:R)``0 <= r`` -> ``r1 <= r2`` -> ``r*r1 <= r*r2``. Intros r r1 r2 H H0; NewDestruct H; NewDestruct H0; Unfold Rle; Auto with real. Right; Rewrite <- H; Do 2 Rewrite Rmult_Ol; Reflexivity. Qed. Hints Resolve Rle_monotony : real. Lemma Rle_monotony_r: (r,r1,r2:R)``0 <= r`` -> ``r1 <= r2`` -> ``r1*r <= r2*r``. Intros r r1 r2 H; Rewrite (Rmult_sym r1 r); Rewrite (Rmult_sym r2 r); Auto with real. Qed. Hints Resolve Rle_monotony_r : real. Lemma Rmult_le_reg_l: (z, x, y:R) ``0``z*x<=z*y`` ->``x<=y``. Intros z x y H H0;Case H0; Auto with real. Intros H1; Apply Rlt_le. Apply Rlt_monotony_contra with z := z;Auto. Intros H1;Replace x with (Rmult (Rinv z) (Rmult z x)); Auto with real. Replace y with (Rmult (Rinv z) (Rmult z y)). Rewrite H1;Auto with real. Rewrite <- Rmult_assoc; Rewrite Rinv_l; Auto with real. Rewrite <- Rmult_assoc; Rewrite Rinv_l; Auto with real. Qed. V7only [ Notation "'Rle_monotony_contra' a b c" := (Rmult_le_reg_l c a b) (at level 10, a,b,c at level 9, only parsing). Notation Rle_monotony_contra := Rmult_le_reg_l. ]. Lemma Rle_anti_monotony1 :(r,r1,r2:R)``r <= 0`` -> ``r1 <= r2`` -> ``r*r2 <= r*r1``. Intros; Replace r with ``-(-r)``; Auto with real. Do 2 Rewrite (Ropp_mul1 ``-r``). Apply Rle_Ropp1; Auto with real. Qed. Hints Resolve Rle_anti_monotony1 : real. Lemma Rle_anti_monotony :(r,r1,r2:R)``r <= 0`` -> ``r1 <= r2`` -> ``r*r1 >= r*r2``. Intros; Apply Rle_ge; Auto with real. Qed. Hints Resolve Rle_anti_monotony : real. Lemma Rle_Rmult_comp: (x, y, z, t:R) ``0 <= x`` -> ``0 <= z`` -> ``x <= y`` -> ``z <= t`` -> ``x*z <= y*t``. Intros x y z t H' H'0 H'1 H'2. Apply Rle_trans with r2 := ``x*t``; Auto with real. Repeat Rewrite [x:?](Rmult_sym x t). Apply Rle_monotony; Auto. Apply Rle_trans with z; Auto. Qed. Hints Resolve Rle_Rmult_comp :real. Lemma Rmult_lt:(r1,r2,r3,r4:R)``r3>0`` -> ``r2>0`` -> `` r1 < r2`` -> ``r3 < r4`` -> ``r1*r3 < r2*r4``. Intros; Apply Rlt_trans with ``r2*r3``; Auto with real. Qed. (*********) Lemma Rmult_lt_0 :(r1,r2,r3,r4:R)``r3>=0``->``r2>0``->``r1``r3``r1*r3 ``r1-r2 < 0``. Intros; Apply (Rlt_anti_compatibility ``r2``). Replace ``r2+(r1-r2)`` with r1. Replace ``r2+0`` with r2; Auto with real. Ring. Qed. Hints Resolve Rlt_minus : real. (**********) Lemma Rle_minus:(r1,r2:R)``r1 <= r2`` -> ``r1-r2 <= 0``. NewDestruct 1; Unfold Rle; Auto with real. Qed. (**********) Lemma Rminus_lt:(r1,r2:R)``r1-r2 < 0`` -> ``r1 < r2``. Intros; Replace r1 with ``r1-r2+r2``. Pattern 3 r2; Replace r2 with ``0+r2``; Auto with real. Ring. Qed. (**********) Lemma Rminus_le:(r1,r2:R)``r1-r2 <= 0`` -> ``r1 <= r2``. Intros; Replace r1 with ``r1-r2+r2``. Pattern 3 r2; Replace r2 with ``0+r2``; Auto with real. Ring. Qed. (**********) Lemma tech_Rplus:(r,s:R)``0<=r`` -> ``0 ``r+s<>0``. Intros; Apply sym_not_eqT; Apply Rlt_not_eq. Rewrite Rplus_sym; Replace ``0`` with ``0+0``; Auto with real. Qed. Hints Immediate tech_Rplus : real. (** Order and the square function *) Lemma pos_Rsqr:(r:R)``0<=(Rsqr r)``. Intro; Case (total_order_Rlt_Rle r ``0``); Unfold Rsqr; Intro. Replace ``r*r`` with ``(-r)*(-r)``; Auto with real. Replace ``0`` with ``-r*0``; Auto with real. Replace ``0`` with ``0*r``; Auto with real. Qed. (***********) Lemma pos_Rsqr1:(r:R)``r<>0``->``0<(Rsqr r)``. Intros; Case (not_Req r ``0``); Trivial; Unfold Rsqr; Intro. Replace ``r*r`` with ``(-r)*(-r)``; Auto with real. Replace ``0`` with ``-r*0``; Auto with real. Replace ``0`` with ``0*r``; Auto with real. Qed. Hints Resolve pos_Rsqr pos_Rsqr1 : real. (** Zero is less than one *) Lemma Rlt_R0_R1:``0<1``. Replace ``1`` with ``(Rsqr 1)``; Auto with real. Unfold Rsqr; Auto with real. Qed. Hints Resolve Rlt_R0_R1 : real. Lemma Rle_R0_R1:``0<=1``. Left. Exact Rlt_R0_R1. Qed. (** Order and inverse *) Lemma Rlt_Rinv:(r:R)``0``0``/r < 0``. Intros; Apply not_Rle; Red; Intros. Absurd ``1<=0``; Auto with real. Replace ``1`` with ``r*(/r)``; Auto with real. Replace ``0`` with ``r*0``; Auto with real. Qed. Hints Resolve Rlt_Rinv2 : real. (*********) Lemma Rinv_lt:(r1,r2:R)``0 < r1*r2`` -> ``r1 < r2`` -> ``/r2 < /r1``. Intros; Apply Rlt_monotony_rev with ``r1*r2``; Auto with real. Case (without_div_O_contr r1 r2 ); Intros; Auto with real. Replace ``r1*r2*/r2`` with r1. Replace ``r1*r2*/r1`` with r2; Trivial. Symmetry; Auto with real. Symmetry; Auto with real. Qed. Lemma Rlt_Rinv_R1: (x, y:R) ``1 <= x`` -> ``x``/y< /x``. Intros x y H' H'0. Cut (Rlt R0 x); [Intros Lt0 | Apply Rlt_le_trans with r2 := R1]; Auto with real. Apply Rlt_monotony_contra with z := x; Auto with real. Rewrite (Rmult_sym x (Rinv x)); Rewrite Rinv_l; Auto with real. Apply Rlt_monotony_contra with z := y; Auto with real. Apply Rlt_trans with r2:=x;Auto. Cut ``y*(x*/y)==x``. Intro H1;Rewrite H1;Rewrite (Rmult_1r y);Auto. Rewrite (Rmult_sym x); Rewrite <- Rmult_assoc; Rewrite (Rmult_sym y (Rinv y)); Rewrite Rinv_l; Auto with real. Apply imp_not_Req; Right. Red; Apply Rlt_trans with r2 := x; Auto with real. Qed. Hints Resolve Rlt_Rinv_R1 :real. (*********************************************************) (** Greater *) (*********************************************************) (**********) Lemma Rge_ge_eq:(r1,r2:R)``r1 >= r2`` -> ``r2 >= r1`` -> r1==r2. Intros; Apply Rle_antisym; Auto with real. Qed. (**********) Lemma Rlt_not_ge:(r1,r2:R)~(``r1``r1>=r2``. Intros; Unfold Rge; Elim (total_order r1 r2); Intro. Absurd ``r1``r2<=r1``. Intros; Apply Rge_le; Apply Rlt_not_ge; Assumption. Qed. (**********) Lemma Rgt_not_le:(r1,r2:R)~(``r1>r2``)->``r1<=r2``. Intros r1 r2 H; Apply Rge_le. Exact (Rlt_not_ge r2 r1 H). Qed. (**********) Lemma Rgt_ge:(r1,r2:R)``r1>r2`` -> ``r1 >= r2``. Red; Auto with real. Qed. V7only [ (**********) Lemma Rlt_sym:(r1,r2:R)``r1 ``r2>r1``. Split; Unfold Rgt; Auto with real. Qed. (**********) Lemma Rle_sym1:(r1,r2:R)``r1<=r2``->``r2>=r1``. Proof Rle_ge. Notation "'Rle_sym2' a b" := (Rge_le b a) (at level 10, a,b at next level). Notation "'Rle_sym2' a" := [b:R](Rge_le b a) (at level 10, a at next level). Notation Rle_sym2 := Rge_le. (* (**********) Lemma Rle_sym2:(r1,r2:R)``r2>=r1`` -> ``r1<=r2``. Proof [r1,r2](Rge_le r2 r1). *) (**********) Lemma Rle_sym:(r1,r2:R)``r1<=r2``<->``r2>=r1``. Split; Auto with real. Qed. ]. (**********) Lemma Rge_gt_trans:(r1,r2,r3:R)``r1>=r2``->``r2>r3``->``r1>r3``. Unfold Rgt; Intros; Apply Rlt_le_trans with r2; Auto with real. Qed. (**********) Lemma Rgt_ge_trans:(r1,r2,r3:R)``r1>r2`` -> ``r2>=r3`` -> ``r1>r3``. Unfold Rgt; Intros; Apply Rle_lt_trans with r2; Auto with real. Qed. (**********) Lemma Rgt_trans:(r1,r2,r3:R)``r1>r2`` -> ``r2>r3`` -> ``r1>r3``. Unfold Rgt; Intros; Apply Rlt_trans with r2; Auto with real. Qed. (**********) Lemma Rge_trans:(r1,r2,r3:R)``r1>=r2`` -> ``r2>=r3`` -> ``r1>=r3``. Intros; Apply Rle_ge. Apply Rle_trans with r2; Auto with real. Qed. (**********) Lemma Rlt_r_plus_R1:(r:R)``0<=r`` -> ``0``r1>r1-r2``. Red; Unfold Rminus; Intros. Pattern 2 r1; Replace r1 with ``r1+0``; Auto with real. Qed. (***********) Lemma Rgt_plus_plus_r:(r,r1,r2:R)``r1>r2``->``r+r1 > r+r2``. Unfold Rgt; Auto with real. Qed. Hints Resolve Rgt_plus_plus_r : real. (***********) Lemma Rgt_r_plus_plus:(r,r1,r2:R)``r+r1 > r+r2`` -> ``r1 > r2``. Unfold Rgt; Intros; Apply (Rlt_anti_compatibility r r2 r1 H). Qed. (***********) Lemma Rge_plus_plus_r:(r,r1,r2:R)``r1>=r2`` -> ``r+r1 >= r+r2``. Intros; Apply Rle_ge; Auto with real. Qed. Hints Resolve Rge_plus_plus_r : real. (***********) Lemma Rge_r_plus_plus:(r,r1,r2:R)``r+r1 >= r+r2`` -> ``r1>=r2``. Intros; Apply Rle_ge; Apply Rle_anti_compatibility with r; Auto with real. Qed. (***********) Lemma Rmult_ge_compat_r: (z,x,y:R) ``z>=0`` -> ``x>=y`` -> ``x*z >= y*z``. Intros z x y; Intros; Apply Rle_ge; Apply Rle_monotony_r; Apply Rge_le; Assumption. Qed. V7only [ Notation "'Rge_monotony' a b c" := (Rmult_ge_compat_r c a b) (at level 10, a,b,c at level 9, only parsing). Notation Rge_monotony := Rmult_ge_compat_r. ]. (***********) Lemma Rgt_minus:(r1,r2:R)``r1>r2`` -> ``r1-r2 > 0``. Intros; Replace ``0`` with ``r2-r2``; Auto with real. Unfold Rgt Rminus; Auto with real. Qed. (*********) Lemma minus_Rgt:(r1,r2:R)``r1-r2 > 0`` -> ``r1>r2``. Intros; Replace r2 with ``r2+0``; Auto with real. Intros; Replace r1 with ``r2+(r1-r2)``; Auto with real. Qed. (**********) Lemma Rge_minus:(r1,r2:R)``r1>=r2`` -> ``r1-r2 >= 0``. Unfold Rge; Intros; Elim H; Intro. Left; Apply (Rgt_minus r1 r2 H0). Right; Apply (eq_Rminus r1 r2 H0). Qed. (*********) Lemma minus_Rge:(r1,r2:R)``r1-r2 >= 0`` -> ``r1>=r2``. Intros; Replace r2 with ``r2+0``; Auto with real. Intros; Replace r1 with ``r2+(r1-r2)``; Auto with real. Qed. (*********) Lemma Rmult_gt:(r1,r2:R)``r1>0`` -> ``r2>0`` -> ``r1*r2>0``. Unfold Rgt;Intros. Replace ``0`` with ``0*r2``; Auto with real. Qed. (*********) Lemma Rmult_lt_pos:(x,y:R)``0 ``0 ``0 ``0<=b`` -> ``a+b==0`` -> ``a==0``. Intros a b [H|H] H0 H1; Auto with real. Absurd ``0 ``0<=b`` -> ``a+b==0`` -> ``a==0``/\``b==0``. Intros a b; Split. Apply Rplus_eq_R0_l with b; Auto with real. Apply Rplus_eq_R0_l with a; Auto with real. Rewrite Rplus_sym; Auto with real. Qed. (***********) Lemma Rplus_Rsr_eq_R0_l:(a,b:R)``(Rsqr a)+(Rsqr b)==0``->``a==0``. Intros a b; Intros; Apply Rsqr_r_R0; Apply Rplus_eq_R0_l with (Rsqr b); Auto with real. Qed. Lemma Rplus_Rsr_eq_R0:(a,b:R)``(Rsqr a)+(Rsqr b)==0``->``a==0``/\``b==0``. Intros a b; Split. Apply Rplus_Rsr_eq_R0_l with b; Auto with real. Apply Rplus_Rsr_eq_R0_l with a; Auto with real. Rewrite Rplus_sym; Auto with real. Qed. (**********************************************************) (** Injection from [N] to [R] *) (**********************************************************) (**********) Lemma S_INR:(n:nat)(INR (S n))==``(INR n)+1``. Intro; Case n; Auto with real. Qed. (**********) Lemma S_O_plus_INR:(n:nat) (INR (plus (S O) n))==``(INR (S O))+(INR n)``. Intro; Simpl; Case n; Intros; Auto with real. Qed. (**********) Lemma plus_INR:(n,m:nat)(INR (plus n m))==``(INR n)+(INR m)``. Intros n m; Induction n. Simpl; Auto with real. Replace (plus (S n) m) with (S (plus n m)); Auto with arith. Repeat Rewrite S_INR. Rewrite Hrecn; Ring. Qed. (**********) Lemma minus_INR:(n,m:nat)(le m n)->(INR (minus n m))==``(INR n)-(INR m)``. Intros n m le; Pattern m n; Apply le_elim_rel; Auto with real. Intros; Rewrite <- minus_n_O; Auto with real. Intros; Repeat Rewrite S_INR; Simpl. Rewrite H0; Ring. Qed. (*********) Lemma mult_INR:(n,m:nat)(INR (mult n m))==(Rmult (INR n) (INR m)). Intros n m; Induction n. Simpl; Auto with real. Intros; Repeat Rewrite S_INR; Simpl. Rewrite plus_INR; Rewrite Hrecn; Ring. Qed. Hints Resolve plus_INR minus_INR mult_INR : real. (*********) Lemma lt_INR_0:(n:nat)(lt O n)->``0 < (INR n)``. Induction 1; Intros; Auto with real. Rewrite S_INR; Auto with real. Qed. Hints Resolve lt_INR_0: real. Lemma lt_INR:(n,m:nat)(lt n m)->``(INR n) < (INR m)``. Induction 1; Intros; Auto with real. Rewrite S_INR; Auto with real. Rewrite S_INR; Apply Rlt_trans with (INR m0); Auto with real. Qed. Hints Resolve lt_INR: real. Lemma INR_lt_1:(n:nat)(lt (S O) n)->``1 < (INR n)``. Intros;Replace ``1`` with (INR (S O));Auto with real. Qed. Hints Resolve INR_lt_1: real. (**********) Lemma INR_pos : (p:positive)``0<(INR (convert p))``. Intro; Apply lt_INR_0. Simpl; Auto with real. Apply compare_convert_O. Qed. Hints Resolve INR_pos : real. (**********) Lemma pos_INR:(n:nat)``0 <= (INR n)``. Intro n; Case n. Simpl; Auto with real. Auto with arith real. Qed. Hints Resolve pos_INR: real. Lemma INR_lt:(n,m:nat)``(INR n) < (INR m)``->(lt n m). Double Induction n m;Intros. Simpl;ElimType False;Apply (Rlt_antirefl R0);Auto. Auto with arith. Generalize (pos_INR (S n0));Intro;Cut (INR O)==R0; [Intro H2;Rewrite H2 in H0;Idtac|Simpl;Trivial]. Generalize (Rle_lt_trans ``0`` (INR (S n0)) ``0`` H1 H0);Intro; ElimType False;Apply (Rlt_antirefl R0);Auto. Do 2 Rewrite S_INR in H1;Cut ``(INR n1) < (INR n0)``. Intro H2;Generalize (H0 n0 H2);Intro;Auto with arith. Apply (Rlt_anti_compatibility ``1`` (INR n1) (INR n0)). Rewrite Rplus_sym;Rewrite (Rplus_sym ``1`` (INR n0));Trivial. Qed. Hints Resolve INR_lt: real. (*********) Lemma le_INR:(n,m:nat)(le n m)->``(INR n)<=(INR m)``. Induction 1; Intros; Auto with real. Rewrite S_INR. Apply Rle_trans with (INR m0); Auto with real. Qed. Hints Resolve le_INR: real. (**********) Lemma not_INR_O:(n:nat)``(INR n)<>0``->~n=O. Red; Intros n H H1. Apply H. Rewrite H1; Trivial. Qed. Hints Immediate not_INR_O : real. (**********) Lemma not_O_INR:(n:nat)~n=O->``(INR n)<>0``. Intro n; Case n. Intro; Absurd (0)=(0); Trivial. Intros; Rewrite S_INR. Apply Rgt_not_eq; Red; Auto with real. Qed. Hints Resolve not_O_INR : real. Lemma not_nm_INR:(n,m:nat)~n=m->``(INR n)<>(INR m)``. Intros n m H; Case (le_or_lt n m); Intros H1. Case (le_lt_or_eq ? ? H1); Intros H2. Apply imp_not_Req; Auto with real. ElimType False;Auto. Apply sym_not_eqT; Apply imp_not_Req; Auto with real. Qed. Hints Resolve not_nm_INR : real. Lemma INR_eq: (n,m:nat)(INR n)==(INR m)->n=m. Intros;Case (le_or_lt n m); Intros H1. Case (le_lt_or_eq ? ? H1); Intros H2;Auto. Cut ~n=m. Intro H3;Generalize (not_nm_INR n m H3);Intro H4; ElimType False;Auto. Omega. Symmetry;Cut ~m=n. Intro H3;Generalize (not_nm_INR m n H3);Intro H4; ElimType False;Auto. Omega. Qed. Hints Resolve INR_eq : real. Lemma INR_le: (n, m : nat) (Rle (INR n) (INR m)) -> (le n m). Intros;Elim H;Intro. Generalize (INR_lt n m H0);Intro;Auto with arith. Generalize (INR_eq n m H0);Intro;Rewrite H1;Auto. Qed. Hints Resolve INR_le : real. Lemma not_1_INR:(n:nat)~n=(S O)->``(INR n)<>1``. Replace ``1`` with (INR (S O)); Auto with real. Qed. Hints Resolve not_1_INR : real. (**********************************************************) (** Injection from [Z] to [R] *) (**********************************************************) V7only [ (**********) Definition Z_of_nat := inject_nat. Notation INZ:=Z_of_nat. ]. (**********) Lemma IZN:(z:Z)(`0<=z`)->(Ex [m:nat] z=(INZ m)). Intros z; Unfold INZ; Apply inject_nat_complete; Assumption. Qed. (**********) Lemma INR_IZR_INZ:(n:nat)(INR n)==(IZR (INZ n)). Induction n; Auto with real. Intros; Simpl; Rewrite bij1; Auto with real. Qed. Lemma plus_IZR_NEG_POS : (p,q:positive)(IZR `(POS p)+(NEG q)`)==``(IZR (POS p))+(IZR (NEG q))``. Intros. Case (lt_eq_lt_dec (convert p) (convert q)). Intros [H | H]; Simpl. Rewrite convert_compare_INFERIEUR; Simpl; Trivial. Rewrite (true_sub_convert q p). Rewrite minus_INR; Auto with arith; Ring. Apply ZC2; Apply convert_compare_INFERIEUR; Trivial. Rewrite (convert_intro p q); Trivial. Rewrite convert_compare_EGAL; Simpl; Auto with real. Intro H; Simpl. Rewrite convert_compare_SUPERIEUR; Simpl; Auto with arith. Rewrite (true_sub_convert p q). Rewrite minus_INR; Auto with arith; Ring. Apply ZC2; Apply convert_compare_INFERIEUR; Trivial. Qed. (**********) Lemma plus_IZR:(z,t:Z)(IZR `z+t`)==``(IZR z)+(IZR t)``. Intro z; NewDestruct z; Intro t; NewDestruct t; Intros; Auto with real. Simpl; Intros; Rewrite convert_add; Auto with real. Apply plus_IZR_NEG_POS. Rewrite Zplus_sym; Rewrite Rplus_sym; Apply plus_IZR_NEG_POS. Simpl; Intros; Rewrite convert_add; Rewrite plus_INR; Auto with real. Qed. (**********) Lemma mult_IZR:(z,t:Z)(IZR `z*t`)==``(IZR z)*(IZR t)``. Intros z t; Case z; Case t; Simpl; Auto with real. Intros t1 z1; Rewrite times_convert; Auto with real. Intros t1 z1; Rewrite times_convert; Auto with real. Rewrite Rmult_sym. Rewrite Ropp_mul1; Auto with real. Apply eq_Ropp; Rewrite mult_sym; Auto with real. Intros t1 z1; Rewrite times_convert; Auto with real. Rewrite Ropp_mul1; Auto with real. Intros t1 z1; Rewrite times_convert; Auto with real. Rewrite Ropp_mul2; Auto with real. Qed. (**********) Lemma Ropp_Ropp_IZR:(z:Z)(IZR (`-z`))==``-(IZR z)``. Intro z; Case z; Simpl; Auto with real. Qed. (**********) Lemma Z_R_minus:(z1,z2:Z)``(IZR z1)-(IZR z2)``==(IZR `z1-z2`). Intros z1 z2; Unfold Rminus; Unfold Zminus. Rewrite <-(Ropp_Ropp_IZR z2); Symmetry; Apply plus_IZR. Qed. (**********) Lemma lt_O_IZR:(z:Z)``0 < (IZR z)``->`0`z1`z=0`. Intro z; NewDestruct z; Simpl; Intros; Auto with zarith. Case (Rlt_not_eq ``0`` (INR (convert p))); Auto with real. Case (Rlt_not_eq ``-(INR (convert p))`` ``0`` ); Auto with real. Apply Rgt_RoppO. Unfold Rgt; Apply INR_pos. Qed. (**********) Lemma eq_IZR:(z1,z2:Z)(IZR z1)==(IZR z2)->z1=z2. Intros z1 z2 H;Generalize (eq_Rminus (IZR z1) (IZR z2) H); Rewrite (Z_R_minus z1 z2);Intro;Generalize (eq_IZR_R0 `z1-z2` H0); Intro;Omega. Qed. (**********) Lemma not_O_IZR:(z:Z)`z<>0`->``(IZR z)<>0``. Intros z H; Red; Intros H0; Case H. Apply eq_IZR; Auto. Qed. (*********) Lemma le_O_IZR:(z:Z)``0<= (IZR z)``->`0<=z`. Unfold Rle; Intros z [H|H]. Red;Intro;Apply (Zlt_le_weak `0` z (lt_O_IZR z H)); Assumption. Rewrite (eq_IZR_R0 z); Auto with zarith real. Qed. (**********) Lemma le_IZR:(z1,z2:Z)``(IZR z1)<=(IZR z2)``->`z1<=z2`. Unfold Rle; Intros z1 z2 [H|H]. Apply (Zlt_le_weak z1 z2); Auto with real. Apply lt_IZR; Trivial. Rewrite (eq_IZR z1 z2); Auto with zarith real. Qed. (**********) Lemma le_IZR_R1:(z:Z)``(IZR z)<=1``-> `z<=1`. Pattern 1 ``1``; Replace ``1`` with (IZR `1`); Intros; Auto. Apply le_IZR; Trivial. Qed. (**********) Lemma IZR_ge: (m,n:Z) `m>= n` -> ``(IZR m)>=(IZR n)``. Intros m n H; Apply Rlt_not_ge;Red;Intro. Generalize (lt_IZR m n H0); Intro; Omega. Qed. Lemma IZR_le: (m,n:Z) `m<= n` -> ``(IZR m)<=(IZR n)``. Intros m n H;Apply Rgt_not_le;Red;Intro. Unfold Rgt in H0;Generalize (lt_IZR n m H0); Intro; Omega. Qed. Lemma IZR_lt: (m,n:Z) `m< n` -> ``(IZR m)<(IZR n)``. Intros m n H;Cut `m<=n`. Intro H0;Elim (IZR_le m n H0);Intro;Auto. Generalize (eq_IZR m n H1);Intro;ElimType False;Omega. Omega. Qed. Lemma one_IZR_lt1 : (z:Z)``-1<(IZR z)<1``->`z=0`. Intros z (H1,H2). Apply Zle_antisym. Apply Zlt_n_Sm_le; Apply lt_IZR; Trivial. Replace `0` with (Zs `-1`); Trivial. Apply Zlt_le_S; Apply lt_IZR; Trivial. Qed. Lemma one_IZR_r_R1 : (r:R)(z,x:Z)``r<(IZR z)<=r+1``->``r<(IZR x)<=r+1``->z=x. Intros r z x (H1,H2) (H3,H4). Cut `z-x=0`; Auto with zarith. Apply one_IZR_lt1. Rewrite <- Z_R_minus; Split. Replace ``-1`` with ``r-(r+1)``. Unfold Rminus; Apply Rplus_lt_le_lt; Auto with real. Ring. Replace ``1`` with ``(r+1)-r``. Unfold Rminus; Apply Rplus_le_lt_lt; Auto with real. Ring. Qed. (**********) Lemma single_z_r_R1: (r:R)(z,x:Z)``r<(IZR z)``->``(IZR z)<=r+1``->``r<(IZR x)``-> ``(IZR x)<=r+1``->z=x. Intros; Apply one_IZR_r_R1 with r; Auto. Qed. (**********) Lemma tech_single_z_r_R1 :(r:R)(z:Z)``r<(IZR z)``->``(IZR z)<=r+1`` -> (Ex [s:Z] (~s=z/\``r<(IZR s)``/\``(IZR s)<=r+1``))->False. Intros r z H1 H2 (s, (H3,(H4,H5))). Apply H3; Apply single_z_r_R1 with r; Trivial. Qed. (*****************************************************************) (** Definitions of new types *) (*****************************************************************) Record nonnegreal : Type := mknonnegreal { nonneg :> R; cond_nonneg : ``0<=nonneg`` }. Record posreal : Type := mkposreal { pos :> R; cond_pos : ``0 R; cond_nonpos : ``nonpos<=0`` }. Record negreal : Type := mknegreal { neg :> R; cond_neg : ``neg<0`` }. Record nonzeroreal : Type := mknonzeroreal { nonzero :> R; cond_nonzero : ~``nonzero==0`` }. (**********) Lemma prod_neq_R0 : (x,y:R) ~``x==0``->~``y==0``->~``x*y==0``. Intros x y; Intros; Red; Intro; Generalize (without_div_Od x y H1); Intro; Elim H2; Intro; [Rewrite H3 in H; Elim H | Rewrite H3 in H0; Elim H0]; Reflexivity. Qed. (*********) Lemma Rmult_le_pos : (x,y:R) ``0<=x`` -> ``0<=y`` -> ``0<=x*y``. Intros x y H H0; Rewrite <- (Rmult_Ol x); Rewrite <- (Rmult_sym x); Apply (Rle_monotony x R0 y H H0). Qed. Lemma double : (x:R) ``2*x==x+x``. Intro; Ring. Qed. Lemma double_var : (x:R) ``x == x/2 + x/2``. Intro; Rewrite <- double; Unfold Rdiv; Rewrite <- Rmult_assoc; Symmetry; Apply Rinv_r_simpl_m. Replace ``2`` with (INR (2)); [Apply not_O_INR; Discriminate | Unfold INR; Ring]. Qed. (**********************************************************) (** Other rules about < and <= *) (**********************************************************) Lemma gt0_plus_gt0_is_gt0 : (x,y:R) ``0 ``0 ``0 ``0 ``0 ``0<=y`` -> ``0 ``0<=y`` -> ``0<=x+y``. Intros x y; Intros; Apply Rle_trans with x; [Assumption | Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Assumption]. Qed. Lemma plus_le_is_le : (x,y,z:R) ``0<=y`` -> ``x+y<=z`` -> ``x<=z``. Intros x y z; Intros; Apply Rle_trans with ``x+y``; [Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Assumption | Assumption]. Qed. Lemma plus_lt_is_lt : (x,y,z:R) ``0<=y`` -> ``x+y ``x ``0<=r3`` -> ``r1 ``r3 ``r1*r3``x<=y+eps``) -> ``x<=y``. Intros x y; Intros; Elim (total_order x y); Intro. Left; Assumption. Elim H0; Intro. Right; Assumption. Clear H0; Generalize (Rgt_minus x y H1); Intro H2; Change ``0Prop) (bound E) -> (ExT [x:R] (E x)) -> (ExT [m:R] (is_lub E m)). Intros; Elim (complet E H H0); Intros; Split with x; Assumption. Qed.