(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R;a,b:R] : Type := (sigTT ? [g:R->R](antiderivative f g a b)\/(antiderivative f g b a)). Definition NewtonInt [f:R->R;a,b:R;pr:(Newton_integrable f a b)] : R := let g = Cases pr of (existTT a b) => a end in ``(g b)-(g a)``. (* If f is differentiable, then f' is Newton integrable (Tautology ?) *) Lemma FTCN_step1 : (f:Differential;a,b:R) (Newton_integrable [x:R](derive_pt f x (cond_diff f x)) a b). Intros f a b; Unfold Newton_integrable; Apply existTT with (d1 f); Unfold antiderivative; Intros; Case (total_order_Rle a b); Intro; [Left; Split; [Intros; Exists (cond_diff f x); Reflexivity | Assumption] | Right; Split; [Intros; Exists (cond_diff f x); Reflexivity | Auto with real]]. Defined. (* By definition, we have the Fondamental Theorem of Calculus *) Lemma FTC_Newton : (f:Differential;a,b:R) (NewtonInt [x:R](derive_pt f x (cond_diff f x)) a b (FTCN_step1 f a b))==``(f b)-(f a)``. Intros; Unfold NewtonInt; Reflexivity. Qed. (* $\int_a^a f$ exists forall a:R and f:R->R *) Lemma NewtonInt_P1 : (f:R->R;a:R) (Newton_integrable f a a). Intros f a; Unfold Newton_integrable; Apply existTT with (mult_fct (fct_cte (f a)) id); Left; Unfold antiderivative; Split. Intros; Assert H1 : (derivable_pt (mult_fct (fct_cte (f a)) id) x). Apply derivable_pt_mult. Apply derivable_pt_const. Apply derivable_pt_id. Exists H1; Assert H2 : x==a. Elim H; Intros; Apply Rle_antisym; Assumption. Symmetry; Apply derive_pt_eq_0; Replace (f x) with ``0*(id x)+(fct_cte (f a) x)*1``; [Apply (derivable_pt_lim_mult (fct_cte (f a)) id x); [Apply derivable_pt_lim_const | Apply derivable_pt_lim_id] | Unfold id fct_cte; Rewrite H2; Ring]. Right; Reflexivity. Defined. (* $\int_a^a f = 0$ *) Lemma NewtonInt_P2 : (f:R->R;a:R) ``(NewtonInt f a a (NewtonInt_P1 f a))==0``. Intros; Unfold NewtonInt; Simpl; Unfold mult_fct fct_cte id; Ring. Qed. (* If $\int_a^b f$ exists, then $\int_b^a f$ exists too *) Lemma NewtonInt_P3 : (f:R->R;a,b:R;X:(Newton_integrable f a b)) (Newton_integrable f b a). Unfold Newton_integrable; Intros; Elim X; Intros g H; Apply existTT with g; Tauto. Defined. (* $\int_a^b f = -\int_b^a f$ *) Lemma NewtonInt_P4 : (f:R->R;a,b:R;pr:(Newton_integrable f a b)) ``(NewtonInt f a b pr)==-(NewtonInt f b a (NewtonInt_P3 f a b pr))``. Intros; Unfold Newton_integrable in pr; Elim pr; Intros; Elim p; Intro. Unfold NewtonInt; Case (NewtonInt_P3 f a b (existTT R->R [g:(R->R)](antiderivative f g a b)\/(antiderivative f g b a) x p)). Intros; Elim o; Intro. Unfold antiderivative in H0; Elim H0; Intros; Elim H2; Intro. Unfold antiderivative in H; Elim H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H5 H3)). Rewrite H3; Ring. Assert H1 := (antiderivative_Ucte f x x0 a b H H0); Elim H1; Intros; Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. Assert H3 : ``a<=a<=b``. Split; [Right; Reflexivity | Assumption]. Assert H4 : ``a<=b<=b``. Split; [Assumption | Right; Reflexivity]. Assert H5 := (H2 ? H3); Assert H6 := (H2 ? H4); Rewrite H5; Rewrite H6; Ring. Unfold NewtonInt; Case (NewtonInt_P3 f a b (existTT R->R [g:(R->R)](antiderivative f g a b)\/(antiderivative f g b a) x p)); Intros; Elim o; Intro. Assert H1 := (antiderivative_Ucte f x x0 b a H H0); Elim H1; Intros; Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. Assert H3 : ``b<=a<=a``. Split; [Assumption | Right; Reflexivity]. Assert H4 : ``b<=b<=a``. Split; [Right; Reflexivity | Assumption]. Assert H5 := (H2 ? H3); Assert H6 := (H2 ? H4); Rewrite H5; Rewrite H6; Ring. Unfold antiderivative in H0; Elim H0; Intros; Elim H2; Intro. Unfold antiderivative in H; Elim H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H5 H3)). Rewrite H3; Ring. Qed. (* The set of Newton integrable functions is a vectorial space *) Lemma NewtonInt_P5 : (f,g:R->R;l,a,b:R) (Newton_integrable f a b) -> (Newton_integrable g a b) -> (Newton_integrable [x:R]``l*(f x)+(g x)`` a b). Unfold Newton_integrable; Intros; Elim X; Intros; Elim X0; Intros; Exists [y:R]``l*(x y)+(x0 y)``. Elim p; Intro. Elim p0; Intro. Left; Unfold antiderivative; Unfold antiderivative in H H0; Elim H; Clear H; Intros; Elim H0; Clear H0; Intros H0 _. Split. Intros; Elim (H ? H2); Elim (H0 ? H2); Intros. Assert H5 : (derivable_pt [y:R]``l*(x y)+(x0 y)`` x1). Reg. Exists H5; Symmetry; Reg; Rewrite <- H3; Rewrite <- H4; Reflexivity. Assumption. Unfold antiderivative in H H0; Elim H; Elim H0; Intros; Elim H4; Intro. Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H5 H2)). Left; Rewrite <- H5; Unfold antiderivative; Split. Intros; Elim H6; Intros; Assert H9 : ``x1==a``. Apply Rle_antisym; Assumption. Assert H10 : ``a<=x1<=b``. Split; Right; [Symmetry; Assumption | Rewrite <- H5; Assumption]. Assert H11 : ``b<=x1<=a``. Split; Right; [Rewrite <- H5; Symmetry; Assumption | Assumption]. Assert H12 : (derivable_pt x x1). Unfold derivable_pt; Exists (f x1); Elim (H3 ? H10); Intros; EApply derive_pt_eq_1; Symmetry; Apply H12. Assert H13 : (derivable_pt x0 x1). Unfold derivable_pt; Exists (g x1); Elim (H1 ? H11); Intros; EApply derive_pt_eq_1; Symmetry; Apply H13. Assert H14 : (derivable_pt [y:R]``l*(x y)+(x0 y)`` x1). Reg. Exists H14; Symmetry; Reg. Assert H15 : ``(derive_pt x0 x1 H13)==(g x1)``. Elim (H1 ? H11); Intros; Rewrite H15; Apply pr_nu. Assert H16 : ``(derive_pt x x1 H12)==(f x1)``. Elim (H3 ? H10); Intros; Rewrite H16; Apply pr_nu. Rewrite H15; Rewrite H16; Ring. Right; Reflexivity. Elim p0; Intro. Unfold antiderivative in H H0; Elim H; Elim H0; Intros; Elim H4; Intro. Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H5 H2)). Left; Rewrite H5; Unfold antiderivative; Split. Intros; Elim H6; Intros; Assert H9 : ``x1==a``. Apply Rle_antisym; Assumption. Assert H10 : ``a<=x1<=b``. Split; Right; [Symmetry; Assumption | Rewrite H5; Assumption]. Assert H11 : ``b<=x1<=a``. Split; Right; [Rewrite H5; Symmetry; Assumption | Assumption]. Assert H12 : (derivable_pt x x1). Unfold derivable_pt; Exists (f x1); Elim (H3 ? H11); Intros; EApply derive_pt_eq_1; Symmetry; Apply H12. Assert H13 : (derivable_pt x0 x1). Unfold derivable_pt; Exists (g x1); Elim (H1 ? H10); Intros; EApply derive_pt_eq_1; Symmetry; Apply H13. Assert H14 : (derivable_pt [y:R]``l*(x y)+(x0 y)`` x1). Reg. Exists H14; Symmetry; Reg. Assert H15 : ``(derive_pt x0 x1 H13)==(g x1)``. Elim (H1 ? H10); Intros; Rewrite H15; Apply pr_nu. Assert H16 : ``(derive_pt x x1 H12)==(f x1)``. Elim (H3 ? H11); Intros; Rewrite H16; Apply pr_nu. Rewrite H15; Rewrite H16; Ring. Right; Reflexivity. Right; Unfold antiderivative; Unfold antiderivative in H H0; Elim H; Clear H; Intros; Elim H0; Clear H0; Intros H0 _; Split. Intros; Elim (H ? H2); Elim (H0 ? H2); Intros. Assert H5 : (derivable_pt [y:R]``l*(x y)+(x0 y)`` x1). Reg. Exists H5; Symmetry; Reg; Rewrite <- H3; Rewrite <- H4; Reflexivity. Assumption. Defined. (**********) Lemma antiderivative_P1 : (f,g,F,G:R->R;l,a,b:R) (antiderivative f F a b) -> (antiderivative g G a b) -> (antiderivative [x:R]``l*(f x)+(g x)`` [x:R]``l*(F x)+(G x)`` a b). Unfold antiderivative; Intros; Elim H; Elim H0; Clear H H0; Intros; Split. Intros; Elim (H ? H3); Elim (H1 ? H3); Intros. Assert H6 : (derivable_pt [x:R]``l*(F x)+(G x)`` x). Reg. Exists H6; Symmetry; Reg; Rewrite <- H4; Rewrite <- H5; Ring. Assumption. Qed. (* $\int_a^b \lambda f + g = \lambda \int_a^b f + \int_a^b f *) Lemma NewtonInt_P6 : (f,g:R->R;l,a,b:R;pr1:(Newton_integrable f a b);pr2:(Newton_integrable g a b)) (NewtonInt [x:R]``l*(f x)+(g x)`` a b (NewtonInt_P5 f g l a b pr1 pr2))==``l*(NewtonInt f a b pr1)+(NewtonInt g a b pr2)``. Intros f g l a b pr1 pr2; Unfold NewtonInt; Case (NewtonInt_P5 f g l a b pr1 pr2); Intros; Case pr1; Intros; Case pr2; Intros; Case (total_order_T a b); Intro. Elim s; Intro. Elim o; Intro. Elim o0; Intro. Elim o1; Intro. Assert H2 := (antiderivative_P1 f g x0 x1 l a b H0 H1); Assert H3 := (antiderivative_Ucte ? ? ? ? ? H H2); Elim H3; Intros; Assert H5 : ``a<=a<=b``. Split; [Right; Reflexivity | Left; Assumption]. Assert H6 : ``a<=b<=b``. Split; [Left; Assumption | Right; Reflexivity]. Assert H7 := (H4 ? H5); Assert H8 := (H4 ? H6); Rewrite H7; Rewrite H8; Ring. Unfold antiderivative in H1; Elim H1; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H3 a0)). Unfold antiderivative in H0; Elim H0; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 a0)). Unfold antiderivative in H; Elim H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H1 a0)). Rewrite b0; Ring. Elim o; Intro. Unfold antiderivative in H; Elim H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H1 r)). Elim o0; Intro. Unfold antiderivative in H0; Elim H0; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 r)). Elim o1; Intro. Unfold antiderivative in H1; Elim H1; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H3 r)). Assert H2 := (antiderivative_P1 f g x0 x1 l b a H0 H1); Assert H3 := (antiderivative_Ucte ? ? ? ? ? H H2); Elim H3; Intros; Assert H5 : ``b<=a<=a``. Split; [Left; Assumption | Right; Reflexivity]. Assert H6 : ``b<=b<=a``. Split; [Right; Reflexivity | Left; Assumption]. Assert H7 := (H4 ? H5); Assert H8 := (H4 ? H6); Rewrite H7; Rewrite H8; Ring. Qed. Lemma antiderivative_P2 : (f,F0,F1:R->R;a,b,c:R) (antiderivative f F0 a b) -> (antiderivative f F1 b c) -> (antiderivative f [x:R](Cases (total_order_Rle x b) of (leftT _) => (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end) a c). Unfold antiderivative; Intros; Elim H; Clear H; Intros; Elim H0; Clear H0; Intros; Split. 2:Apply Rle_trans with b; Assumption. Intros; Elim H3; Clear H3; Intros; Case (total_order_T x b); Intro. Elim s; Intro. Assert H5 : ``a<=x<=b``. Split; [Assumption | Left; Assumption]. Assert H6 := (H ? H5); Elim H6; Clear H6; Intros; Assert H7 : (derivable_pt_lim [x:R](Cases (total_order_Rle x b) of (leftT _) => (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end) x (f x)). Unfold derivable_pt_lim; Assert H7 : ``(derive_pt F0 x x0)==(f x)``. Symmetry; Assumption. Assert H8 := (derive_pt_eq_1 F0 x (f x) x0 H7); Unfold derivable_pt_lim in H8; Intros; Elim (H8 ? H9); Intros; Pose D := (Rmin x1 ``b-x``). Assert H11 : ``0 (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end x). Unfold derivable_pt; Apply Specif.existT with (f x); Apply H7. Exists H8; Symmetry; Apply derive_pt_eq_0; Apply H7. Assert H5 : ``a<=x<=b``. Split; [Assumption | Right; Assumption]. Assert H6 : ``b<=x<=c``. Split; [Right; Symmetry; Assumption | Assumption]. Elim (H ? H5); Elim (H0 ? H6); Intros; Assert H9 : (derive_pt F0 x x1)==(f x). Symmetry; Assumption. Assert H10 : (derive_pt F1 x x0)==(f x). Symmetry; Assumption. Assert H11 := (derive_pt_eq_1 F0 x (f x) x1 H9); Assert H12 := (derive_pt_eq_1 F1 x (f x) x0 H10); Assert H13 : (derivable_pt_lim [x:R]Cases (total_order_Rle x b) of (leftT _) => (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end x (f x)). Unfold derivable_pt_lim; Unfold derivable_pt_lim in H11 H12; Intros; Elim (H11 ? H13); Elim (H12 ? H13); Intros; Pose D := (Rmin x2 x3); Assert H16 : ``0 (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end) x). Unfold derivable_pt; Apply Specif.existT with (f x); Apply H13. Exists H14; Symmetry; Apply derive_pt_eq_0; Apply H13. Assert H5 : ``b<=x<=c``. Split; [Left; Assumption | Assumption]. Assert H6 := (H0 ? H5); Elim H6; Clear H6; Intros; Assert H7 : (derivable_pt_lim [x:R]Cases (total_order_Rle x b) of (leftT _) => (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end x (f x)). Unfold derivable_pt_lim; Assert H7 : ``(derive_pt F1 x x0)==(f x)``. Symmetry; Assumption. Assert H8 := (derive_pt_eq_1 F1 x (f x) x0 H7); Unfold derivable_pt_lim in H8; Intros; Elim (H8 ? H9); Intros; Pose D := (Rmin x1 ``x-b``); Assert H11 : ``0 (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end x). Unfold derivable_pt; Apply Specif.existT with (f x); Apply H7. Exists H8; Symmetry; Apply derive_pt_eq_0; Apply H7. Qed. Lemma antiderivative_P3 : (f,F0,F1:R->R;a,b,c:R) (antiderivative f F0 a b) -> (antiderivative f F1 c b) -> (antiderivative f F1 c a)\/(antiderivative f F0 a c). Intros; Unfold antiderivative in H H0; Elim H; Clear H; Elim H0; Clear H0; Intros; Case (total_order_T a c); Intro. Elim s; Intro. Right; Unfold antiderivative; Split. Intros; Apply H1; Elim H3; Intros; Split; [Assumption | Apply Rle_trans with c; Assumption]. Left; Assumption. Right; Unfold antiderivative; Split. Intros; Apply H1; Elim H3; Intros; Split; [Assumption | Apply Rle_trans with c; Assumption]. Right; Assumption. Left; Unfold antiderivative; Split. Intros; Apply H; Elim H3; Intros; Split; [Assumption | Apply Rle_trans with a; Assumption]. Left; Assumption. Qed. Lemma antiderivative_P4 : (f,F0,F1:R->R;a,b,c:R) (antiderivative f F0 a b) -> (antiderivative f F1 a c) -> (antiderivative f F1 b c)\/(antiderivative f F0 c b). Intros; Unfold antiderivative in H H0; Elim H; Clear H; Elim H0; Clear H0; Intros; Case (total_order_T c b); Intro. Elim s; Intro. Right; Unfold antiderivative; Split. Intros; Apply H1; Elim H3; Intros; Split; [Apply Rle_trans with c; Assumption | Assumption]. Left; Assumption. Right; Unfold antiderivative; Split. Intros; Apply H1; Elim H3; Intros; Split; [Apply Rle_trans with c; Assumption | Assumption]. Right; Assumption. Left; Unfold antiderivative; Split. Intros; Apply H; Elim H3; Intros; Split; [Apply Rle_trans with b; Assumption | Assumption]. Left; Assumption. Qed. Lemma NewtonInt_P7 : (f:R->R;a,b,c:R) ``a ``b (Newton_integrable f a b) -> (Newton_integrable f b c) -> (Newton_integrable f a c). Unfold Newton_integrable; Intros f a b c Hab Hbc X X0; Elim X; Clear X; Intros F0 H0; Elim X0; Clear X0; Intros F1 H1; Pose g := [x:R](Cases (total_order_Rle x b) of (leftT _) => (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end); Apply existTT with g; Left; Unfold g; Apply antiderivative_P2. Elim H0; Intro. Assumption. Unfold antiderivative in H; Elim H; Clear H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 Hab)). Elim H1; Intro. Assumption. Unfold antiderivative in H; Elim H; Clear H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 Hbc)). Qed. Lemma NewtonInt_P8 : (f:(R->R); a,b,c:R) (Newton_integrable f a b) -> (Newton_integrable f b c) -> (Newton_integrable f a c). Intros. Elim X; Intros F0 H0. Elim X0; Intros F1 H1. Case (total_order_T a b); Intro. Elim s; Intro. Case (total_order_T b c); Intro. Elim s0; Intro. (* a (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end). Elim H0; Intro. Elim H1; Intro. Left; Apply antiderivative_P2; Assumption. Unfold antiderivative in H2; Elim H2; Clear H2; Intros _ H2. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 a1)). Unfold antiderivative in H; Elim H; Clear H; Intros _ H. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H a0)). (* ac *) Case (total_order_T a c); Intro. Elim s0; Intro. Unfold Newton_integrable; Apply existTT with F0. Left. Elim H1; Intro. Unfold antiderivative in H; Elim H; Clear H; Intros _ H. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). Elim H0; Intro. Assert H3 := (antiderivative_P3 f F0 F1 a b c H2 H). Elim H3; Intro. Unfold antiderivative in H4; Elim H4; Clear H4; Intros _ H4. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H4 a1)). Assumption. Unfold antiderivative in H2; Elim H2; Clear H2; Intros _ H2. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 a0)). Rewrite b0; Apply NewtonInt_P1. Unfold Newton_integrable; Apply existTT with F1. Right. Elim H1; Intro. Unfold antiderivative in H; Elim H; Clear H; Intros _ H. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). Elim H0; Intro. Assert H3 := (antiderivative_P3 f F0 F1 a b c H2 H). Elim H3; Intro. Assumption. Unfold antiderivative in H4; Elim H4; Clear H4; Intros _ H4. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H4 r0)). Unfold antiderivative in H2; Elim H2; Clear H2; Intros _ H2. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 a0)). (* a=b *) Rewrite b0; Apply X0. Case (total_order_T b c); Intro. Elim s; Intro. (* a>b & bb & b=c *) Rewrite b0 in X; Apply X. (* a>b & b>c *) Assert X1 := (NewtonInt_P3 f a b X). Assert X2 := (NewtonInt_P3 f b c X0). Apply NewtonInt_P3. Apply NewtonInt_P7 with b; Assumption. Defined. (* Chasles' relation *) Lemma NewtonInt_P9 : (f:R->R;a,b,c:R;pr1:(Newton_integrable f a b);pr2:(Newton_integrable f b c)) ``(NewtonInt f a c (NewtonInt_P8 f a b c pr1 pr2))==(NewtonInt f a b pr1)+(NewtonInt f b c pr2)``. Intros; Unfold NewtonInt. Case (NewtonInt_P8 f a b c pr1 pr2); Intros. Case pr1; Intros. Case pr2; Intros. Case (total_order_T a b); Intro. Elim s; Intro. Case (total_order_T b c); Intro. Elim s0; Intro. (* a (x0 x) | (rightT _) => ``(x1 x)+((x0 b)-(x1 b))`` end a c H1 H2). Elim H3; Intros. Assert H5 : ``a<=a<=c``. Split; [Right; Reflexivity | Left; Apply Rlt_trans with b; Assumption]. Assert H6 : ``a<=c<=c``. Split; [Left; Apply Rlt_trans with b; Assumption | Right; Reflexivity]. Rewrite (H4 ? H5); Rewrite (H4 ? H6). Case (total_order_Rle a b); Intro. Case (total_order_Rle c b); Intro. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r0 a1)). Ring. Elim n; Left; Assumption. Unfold antiderivative in H1; Elim H1; Clear H1; Intros _ H1. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H1 (Rlt_trans ? ? ? a0 a1))). Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 a1)). Unfold antiderivative in H; Elim H; Clear H; Intros _ H. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H a0)). (* ac *) Elim o1; Intro. Unfold antiderivative in H; Elim H; Clear H; Intros _ H. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). Elim o0; Intro. Elim o; Intro. Assert H2 := (antiderivative_P2 f x x1 a c b H1 H). Assert H3 := (antiderivative_Ucte ? ? ? a b H0 H2). Elim H3; Intros. Rewrite (H4 a). Rewrite (H4 b). Case (total_order_Rle b c); Intro. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r0 r)). Case (total_order_Rle a c); Intro. Ring. Elim n0; Unfold antiderivative in H1; Elim H1; Intros; Assumption. Split; [Left; Assumption | Right; Reflexivity]. Split; [Right; Reflexivity | Left; Assumption]. Assert H2 := (antiderivative_P2 ? ? ? ? ? ? H1 H0). Assert H3 := (antiderivative_Ucte ? ? ? c b H H2). Elim H3; Intros. Rewrite (H4 c). Rewrite (H4 b). Case (total_order_Rle b a); Intro. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r0 a0)). Case (total_order_Rle c a); Intro. Ring. Elim n0; Unfold antiderivative in H1; Elim H1; Intros; Assumption. Split; [Left; Assumption | Right; Reflexivity]. Split; [Right; Reflexivity | Left; Assumption]. Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 a0)). (* a=b *) Rewrite b0 in o; Rewrite b0. Elim o; Intro. Elim o1; Intro. Assert H1 := (antiderivative_Ucte ? ? ? b c H H0). Elim H1; Intros. Assert H3 : ``b<=c``. Unfold antiderivative in H; Elim H; Intros; Assumption. Rewrite (H2 b). Rewrite (H2 c). Ring. Split; [Assumption | Right; Reflexivity]. Split; [Right; Reflexivity | Assumption]. Assert H1 : ``b==c``. Unfold antiderivative in H H0; Elim H; Elim H0; Intros; Apply Rle_antisym; Assumption. Rewrite H1; Ring. Elim o1; Intro. Assert H1 : ``b==c``. Unfold antiderivative in H H0; Elim H; Elim H0; Intros; Apply Rle_antisym; Assumption. Rewrite H1; Ring. Assert H1 := (antiderivative_Ucte ? ? ? c b H H0). Elim H1; Intros. Assert H3 : ``c<=b``. Unfold antiderivative in H; Elim H; Intros; Assumption. Rewrite (H2 c). Rewrite (H2 b). Ring. Split; [Assumption | Right; Reflexivity]. Split; [Right; Reflexivity | Assumption]. (* a>b & bb & b=c *) Rewrite <- b0. Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or. Rewrite <- b0 in o. Elim o0; Intro. Unfold antiderivative in H; Elim H; Clear H; Intros _ H. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). Elim o; Intro. Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 r)). Assert H1 := (antiderivative_Ucte f x x0 b a H0 H). Elim H1; Intros. Rewrite (H2 b). Rewrite (H2 a). Ring. Split; [Left; Assumption | Right; Reflexivity]. Split; [Right; Reflexivity | Left; Assumption]. (* a>b & b>c *) Elim o0; Intro. Unfold antiderivative in H; Elim H; Clear H; Intros _ H. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). Elim o1; Intro. Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 r0)). Elim o; Intro. Unfold antiderivative in H1; Elim H1; Clear H1; Intros _ H1. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H1 (Rlt_trans ? ? ? r0 r))). Assert H2 := (antiderivative_P2 ? ? ? ? ? ? H0 H). Assert H3 := (antiderivative_Ucte ? ? ? c a H1 H2). Elim H3; Intros. Assert H5 : ``c<=a``. Unfold antiderivative in H1; Elim H1; Intros; Assumption. Rewrite (H4 c). Rewrite (H4 a). Case (total_order_Rle a b); Intro. Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r1 r)). Case (total_order_Rle c b); Intro. Ring. Elim n0; Left; Assumption. Split; [Assumption | Right; Reflexivity]. Split; [Right; Reflexivity | Assumption]. Qed.