(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* positive | xO : positive -> positive | xH : positive. (** Declare binding key for scope positive_scope *) Delimits Scope positive_scope with positive. (** Automatically open scope positive_scope for type positive, xO and xI *) Bind Scope positive_scope with positive. Arguments Scope xO [ positive_scope ]. Arguments Scope xI [ positive_scope ]. (** Successor *) Fixpoint add_un [x:positive]:positive := Cases x of (xI x') => (xO (add_un x')) | (xO x') => (xI x') | xH => (xO xH) end. (** Addition *) Fixpoint add [x:positive]:positive -> positive := [y:positive] Cases x y of | (xI x') (xI y') => (xO (add_carry x' y')) | (xI x') (xO y') => (xI (add x' y')) | (xI x') xH => (xO (add_un x')) | (xO x') (xI y') => (xI (add x' y')) | (xO x') (xO y') => (xO (add x' y')) | (xO x') xH => (xI x') | xH (xI y') => (xO (add_un y')) | xH (xO y') => (xI y') | xH xH => (xO xH) end with add_carry [x:positive]:positive -> positive := [y:positive] Cases x y of | (xI x') (xI y') => (xI (add_carry x' y')) | (xI x') (xO y') => (xO (add_carry x' y')) | (xI x') xH => (xI (add_un x')) | (xO x') (xI y') => (xO (add_carry x' y')) | (xO x') (xO y') => (xI (add x' y')) | (xO x') xH => (xO (add_un x')) | xH (xI y') => (xI (add_un y')) | xH (xO y') => (xO (add_un y')) | xH xH => (xI xH) end. V7only [Notation "x + y" := (add x y) : positive_scope.]. V8Infix "+" add : positive_scope. Open Local Scope positive_scope. (** From binary positive numbers to Peano natural numbers *) Fixpoint positive_to_nat [x:positive]:nat -> nat := [pow2:nat] Cases x of (xI x') => (plus pow2 (positive_to_nat x' (plus pow2 pow2))) | (xO x') => (positive_to_nat x' (plus pow2 pow2)) | xH => pow2 end. Definition convert := [x:positive] (positive_to_nat x (S O)). (** From Peano natural numbers to binary positive numbers *) Fixpoint anti_convert [n:nat]: positive := Cases n of O => xH | (S x') => (add_un (anti_convert x')) end. (** Operation x -> 2*x-1 *) Fixpoint double_moins_un [x:positive]:positive := Cases x of (xI x') => (xI (xO x')) | (xO x') => (xI (double_moins_un x')) | xH => xH end. (** Predecessor *) Definition sub_un := [x:positive] Cases x of (xI x') => (xO x') | (xO x') => (double_moins_un x') | xH => xH end. (** An auxiliary type for subtraction *) Inductive positive_mask: Set := IsNul : positive_mask | IsPos : positive -> positive_mask | IsNeg : positive_mask. (** Operation x -> 2*x+1 *) Definition Un_suivi_de_mask := [x:positive_mask] Cases x of IsNul => (IsPos xH) | IsNeg => IsNeg | (IsPos p) => (IsPos (xI p)) end. (** Operation x -> 2*x *) Definition Zero_suivi_de_mask := [x:positive_mask] Cases x of IsNul => IsNul | IsNeg => IsNeg | (IsPos p) => (IsPos (xO p)) end. (** Operation x -> 2*x-2 *) Definition double_moins_deux := [x:positive] Cases x of (xI x') => (IsPos (xO (xO x'))) | (xO x') => (IsPos (xO (double_moins_un x'))) | xH => IsNul end. (** Subtraction of binary positive numbers into a positive numbers mask *) Fixpoint sub_pos[x,y:positive]:positive_mask := Cases x y of | (xI x') (xI y') => (Zero_suivi_de_mask (sub_pos x' y')) | (xI x') (xO y') => (Un_suivi_de_mask (sub_pos x' y')) | (xI x') xH => (IsPos (xO x')) | (xO x') (xI y') => (Un_suivi_de_mask (sub_neg x' y')) | (xO x') (xO y') => (Zero_suivi_de_mask (sub_pos x' y')) | (xO x') xH => (IsPos (double_moins_un x')) | xH xH => IsNul | xH _ => IsNeg end with sub_neg [x,y:positive]:positive_mask := Cases x y of (xI x') (xI y') => (Un_suivi_de_mask (sub_neg x' y')) | (xI x') (xO y') => (Zero_suivi_de_mask (sub_pos x' y')) | (xI x') xH => (IsPos (double_moins_un x')) | (xO x') (xI y') => (Zero_suivi_de_mask (sub_neg x' y')) | (xO x') (xO y') => (Un_suivi_de_mask (sub_neg x' y')) | (xO x') xH => (double_moins_deux x') | xH _ => IsNeg end. (** Subtraction of binary positive numbers x and y, returns 1 if x<=y *) Definition true_sub := [x,y:positive] Cases (sub_pos x y) of (IsPos z) => z | _ => xH end. V8Infix "-" true_sub : positive_scope. (** Multiplication on binary positive numbers *) Fixpoint times [x:positive] : positive -> positive:= [y:positive] Cases x of (xI x') => (add y (xO (times x' y))) | (xO x') => (xO (times x' y)) | xH => y end. V8Infix "*" times : positive_scope. (** Division by 2 rounded below but for 1 *) Definition Zdiv2_pos := [z:positive]Cases z of xH => xH | (xO p) => p | (xI p) => p end. V8Infix "/" Zdiv2_pos : positive_scope. (** Comparison on binary positive numbers *) Fixpoint compare [x,y:positive]: relation -> relation := [r:relation] Cases x y of | (xI x') (xI y') => (compare x' y' r) | (xI x') (xO y') => (compare x' y' SUPERIEUR) | (xI x') xH => SUPERIEUR | (xO x') (xI y') => (compare x' y' INFERIEUR) | (xO x') (xO y') => (compare x' y' r) | (xO x') xH => SUPERIEUR | xH (xI y') => INFERIEUR | xH (xO y') => INFERIEUR | xH xH => r end. V8Infix "?=" compare (at level 70, no associativity) : positive_scope. (**********************************************************************) (** Miscellaneous properties of binary positive numbers *) Lemma ZL11: (x:positive) (x=xH) \/ ~(x=xH). Proof. Intros x;Case x;Intros; (Left;Reflexivity) Orelse (Right;Discriminate). Qed. (**********************************************************************) (** Properties of successor on binary positive numbers *) (** Specification of [xI] in term of [Psucc] and [xO] *) Lemma xI_add_un_xO : (x:positive)(xI x) = (add_un (xO x)). Proof. Reflexivity. Qed. Lemma add_un_discr : (x:positive)x<>(add_un x). Proof. Intro x; NewDestruct x; Discriminate. Qed. (** Successor and double *) Lemma is_double_moins_un : (x:positive) (add_un (double_moins_un x)) = (xO x). Proof. Intro x; NewInduction x as [x IHx|x|]; Simpl; Try Rewrite IHx; Reflexivity. Qed. Lemma double_moins_un_add_un_xI : (x:positive)(double_moins_un (add_un x))=(xI x). Proof. Intro x;NewInduction x as [x IHx|x|]; Simpl; Try Rewrite IHx; Reflexivity. Qed. Lemma ZL1: (y:positive)(xO (add_un y)) = (add_un (add_un (xO y))). Proof. Intro y; Induction y; Simpl; Auto. Qed. Lemma double_moins_un_xO_discr : (x:positive)(double_moins_un x)<>(xO x). Proof. Intro x; NewDestruct x; Discriminate. Qed. (** Successor and predecessor *) Lemma add_un_not_un : (x:positive) (add_un x) <> xH. Proof. Intro x; NewDestruct x as [x|x|]; Discriminate. Qed. Lemma sub_add_one : (x:positive) (sub_un (add_un x)) = x. Proof. (Intro x; NewDestruct x as [p|p|]; [Idtac | Idtac | Simpl;Auto]); (NewInduction p as [p IHp||]; [Idtac | Reflexivity | Reflexivity ]); Simpl; Simpl in IHp; Try Rewrite <- IHp; Reflexivity. Qed. Lemma add_sub_one : (x:positive) (x=xH) \/ (add_un (sub_un x)) = x. Proof. Intro x; Induction x; [ Simpl; Auto | Simpl; Intros;Right;Apply is_double_moins_un | Auto ]. Qed. (** Injectivity of successor *) Lemma add_un_inj : (x,y:positive) (add_un x)=(add_un y) -> x=y. Proof. Intro x;NewInduction x; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H; Discriminate H Orelse Try (Injection H; Clear H; Intro H). Rewrite (IHx y H); Reflexivity. Absurd (add_un x)=xH; [ Apply add_un_not_un | Assumption ]. Apply f_equal with 1:=H; Assumption. Absurd (add_un y)=xH; [ Apply add_un_not_un | Symmetry; Assumption ]. Reflexivity. Qed. (**********************************************************************) (** Properties of addition on binary positive numbers *) (** Specification of [Psucc] in term of [Pplus] *) Lemma ZL12: (q:positive) (add_un q) = (add q xH). Proof. Intro q; NewDestruct q; Reflexivity. Qed. Lemma ZL12bis: (q:positive) (add_un q) = (add xH q). Proof. Intro q; NewDestruct q; Reflexivity. Qed. (** Specification of [Pplus_carry] *) Theorem ZL13: (x,y:positive)(add_carry x y) = (add_un (add x y)). Proof. (Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto); Rewrite IHp; Auto. Qed. (** Commutativity *) Theorem add_sym : (x,y:positive) (add x y) = (add y x). Proof. Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto; Try Do 2 Rewrite ZL13; Rewrite IHp;Auto. Qed. (** Permutation of [Pplus] and [Psucc] *) Theorem ZL14: (x,y:positive)(add x (add_un y)) = (add_un (add x y)). Proof. Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto; [ Rewrite ZL13; Rewrite IHp; Auto | Rewrite ZL13; Auto | NewDestruct p;Simpl;Auto | Rewrite IHp;Auto | NewDestruct p;Simpl;Auto ]. Qed. Theorem ZL14bis: (x,y:positive)(add (add_un x) y) = (add_un (add x y)). Proof. Intros x y; Rewrite add_sym; Rewrite add_sym with x:=x; Apply ZL14. Qed. Theorem ZL15: (q,z:positive) ~z=xH -> (add_carry q (sub_un z)) = (add q z). Proof. Intros q z H; Elim (add_sub_one z); [ Intro;Absurd z=xH;Auto | Intros E;Pattern 2 z ;Rewrite <- E; Rewrite ZL14; Rewrite ZL13; Trivial ]. Qed. (** No neutral for addition on strictly positive numbers *) Lemma add_no_neutral : (x,y:positive) ~(add y x)=x. Proof. Intro x;NewInduction x; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H; Discriminate H Orelse Injection H; Clear H; Intro H; Apply (IHx y H). Qed. Lemma add_carry_not_add_un : (x,y:positive) ~(add_carry y x)=(add_un x). Proof. Intros x y H; Absurd (add y x)=x; [ Apply add_no_neutral | Apply add_un_inj; Rewrite <- ZL13; Assumption ]. Qed. (** Simplification *) Lemma add_carry_add : (x,y,z,t:positive) (add_carry x z)=(add_carry y t) -> (add x z)=(add y t). Proof. Intros x y z t H; Apply add_un_inj; Do 2 Rewrite <- ZL13; Assumption. Qed. Lemma simpl_add_r : (x,y,z:positive) (add x z)=(add y z) -> x=y. Proof. Intros x y z; Generalize x y; Clear x y. NewInduction z as [z|z|]. NewDestruct x as [x|x|]; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H; Discriminate H Orelse Try (Injection H; Clear H; Intro H). Rewrite IHz with 1:=(add_carry_add ? ? ? ? H); Reflexivity. Absurd (add_carry x z)=(add_un z); [ Apply add_carry_not_add_un | Assumption ]. Rewrite IHz with 1:=H; Reflexivity. Symmetry in H; Absurd (add_carry y z)=(add_un z); [ Apply add_carry_not_add_un | Assumption ]. Reflexivity. NewDestruct x as [x|x|]; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H; Discriminate H Orelse Try (Injection H; Clear H; Intro H). Rewrite IHz with 1:=H; Reflexivity. Absurd (add x z)=z; [ Apply add_no_neutral | Assumption ]. Rewrite IHz with 1:=H; Reflexivity. Symmetry in H; Absurd y+z=z; [ Apply add_no_neutral | Assumption ]. Reflexivity. Intros H x y; Apply add_un_inj; Do 2 Rewrite ZL12; Assumption. Qed. Lemma simpl_add_l : (x,y,z:positive) (add x y)=(add x z) -> y=z. Proof. Intros x y z H;Apply simpl_add_r with z:=x; Rewrite add_sym with x:=z; Rewrite add_sym with x:=y; Assumption. Qed. Lemma simpl_add_carry_r : (x,y,z:positive) (add_carry x z)=(add_carry y z) -> x=y. Proof. Intros x y z H; Apply simpl_add_r with z:=z; Apply add_carry_add; Assumption. Qed. Lemma simpl_add_carry_l : (x,y,z:positive) (add_carry x y)=(add_carry x z) -> y=z. Proof. Intros x y z H;Apply simpl_add_r with z:=x; Rewrite add_sym with x:=z; Rewrite add_sym with x:=y; Apply add_carry_add; Assumption. Qed. (** Addition on positive is associative *) Theorem add_assoc: (x,y,z:positive)(add x (add y z)) = (add (add x y) z). Proof. Intros x y; Generalize x; Clear x. NewInduction y as [y|y|]; Intro x. NewDestruct x as [x|x|]; Intro z; NewDestruct z as [z|z|]; Simpl; Repeat Rewrite ZL13; Repeat Rewrite ZL14; Repeat Rewrite ZL14bis; Reflexivity Orelse Repeat Apply f_equal with A:=positive; Apply IHy. NewDestruct x as [x|x|]; Intro z; NewDestruct z as [z|z|]; Simpl; Repeat Rewrite ZL13; Repeat Rewrite ZL14; Repeat Rewrite ZL14bis; Reflexivity Orelse Repeat Apply f_equal with A:=positive; Apply IHy. Intro z; Rewrite add_sym with x:=xH; Do 2 Rewrite <- ZL12; Rewrite ZL14bis; Rewrite ZL14; Reflexivity. Qed. (** Commutation of addition with the double of a positive number *) Lemma add_xI_double_moins_un : (p,q:positive)(xO (add p q)) = (add (xI p) (double_moins_un q)). Proof. Intros; Change (xI p) with (add (xO p) xH). Rewrite <- add_assoc; Rewrite <- ZL12bis; Rewrite is_double_moins_un. Reflexivity. Qed. Lemma add_xO_double_moins_un : (p,q:positive) (double_moins_un (add p q)) = (add (xO p) (double_moins_un q)). Proof. NewInduction p as [p IHp|p IHp|]; NewDestruct q as [q|q|]; Simpl; Try Rewrite ZL13; Try Rewrite double_moins_un_add_un_xI; Try Rewrite IHp; Try Rewrite add_xI_double_moins_un; Try Reflexivity. Rewrite <- is_double_moins_un; Rewrite ZL12bis; Reflexivity. Qed. (** Misc *) Lemma add_x_x : (x:positive) (add x x) = (xO x). Proof. Intro x;NewInduction x; Simpl; Try Rewrite ZL13; Try Rewrite IHx; Reflexivity. Qed. (**********************************************************************) (** Peano induction on binary positive positive numbers *) Fixpoint plus_iter [x:positive] : positive -> positive := [y]Cases x of | xH => (add_un y) | (xO x) => (plus_iter x (plus_iter x y)) | (xI x) => (plus_iter x (plus_iter x (add_un y))) end. Lemma plus_iter_add : (x,y:positive)(plus_iter x y)=(add x y). Proof. Intro x;NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y; Simpl; Reflexivity Orelse Do 2 Rewrite IHp; Rewrite add_assoc; Rewrite add_x_x; Try Reflexivity. Rewrite ZL13; Rewrite <- ZL14; Reflexivity. Rewrite ZL12; Reflexivity. Qed. Lemma plus_iter_xO : (x:positive)(plus_iter x x)=(xO x). Proof. Intro; Rewrite <- add_x_x; Apply plus_iter_add. Qed. Lemma plus_iter_xI : (x:positive)(add_un (plus_iter x x))=(xI x). Proof. Intro; Rewrite xI_add_un_xO; Rewrite <- add_x_x; Apply (f_equal positive); Apply plus_iter_add. Qed. Lemma iterate_add : (P:(positive->Type)) ((n:positive)(P n) ->(P (add_un n)))->(p,n:positive)(P n) -> (P (plus_iter p n)). Proof. Intros P H; NewInduction p; Simpl; Intros. Apply IHp; Apply IHp; Apply H; Assumption. Apply IHp; Apply IHp; Assumption. Apply H; Assumption. Defined. (** Peano induction *) Theorem Pind : (P:(positive->Prop)) (P xH) ->((n:positive)(P n) ->(P (add_un n))) ->(n:positive)(P n). Proof. Intros P H1 Hsucc n; NewInduction n. Rewrite <- plus_iter_xI; Apply Hsucc; Apply iterate_add; Assumption. Rewrite <- plus_iter_xO; Apply iterate_add; Assumption. Assumption. Qed. (** Peano recursion *) Definition Prec : (A:Set)A->(positive->A->A)->positive->A := [A;a;f]Fix Prec { Prec [p:positive] : A := Cases p of | xH => a | (xO p) => (iterate_add [_]A f p p (Prec p)) | (xI p) => (f (plus_iter p p) (iterate_add [_]A f p p (Prec p))) end}. (** Peano case analysis *) Theorem Pcase : (P:(positive->Prop)) (P xH) ->((n:positive)(P (add_un n))) ->(n:positive)(P n). Proof. Intros; Apply Pind; Auto. Qed. Check let fact = (Prec positive xH [p;r](times (add_un p) r)) in let seven = (xI (xI xH)) in let five_thousand_forty= (xO(xO(xO(xO(xI(xI(xO(xI(xI(xI(xO(xO xH)))))))))))) in ((refl_equal ? ?) :: (fact seven) = five_thousand_forty). (**********************************************************************) (** Properties of multiplication on binary positive numbers *) (** One is right neutral for multiplication *) Lemma times_x_1 : (x:positive) (times x xH) = x. Proof. Intro x;NewInduction x; Simpl. Rewrite IHx; Reflexivity. Rewrite IHx; Reflexivity. Reflexivity. Qed. (** Right reduction properties for multiplication *) Lemma times_x_double : (x,y:positive) (times x (xO y)) = (xO (times x y)). Proof. Intros x y; NewInduction x; Simpl. Rewrite IHx; Reflexivity. Rewrite IHx; Reflexivity. Reflexivity. Qed. Lemma times_x_double_plus_one : (x,y:positive) (times x (xI y)) = (add x (xO (times x y))). Proof. Intros x y; NewInduction x; Simpl. Rewrite IHx; Do 2 Rewrite add_assoc; Rewrite add_sym with x:=y; Reflexivity. Rewrite IHx; Reflexivity. Reflexivity. Qed. (** Commutativity of multiplication *) Theorem times_sym : (x,y:positive) (times x y) = (times y x). Proof. Intros x y; NewInduction y; Simpl. Rewrite <- IHy; Apply times_x_double_plus_one. Rewrite <- IHy; Apply times_x_double. Apply times_x_1. Qed. (** Distributivity of multiplication over addition *) Theorem times_add_distr: (x,y,z:positive) (times x (add y z)) = (add (times x y) (times x z)). Proof. Intros x y z; NewInduction x; Simpl. Rewrite IHx; Rewrite <- add_assoc with y := (xO (times x y)); Rewrite -> add_assoc with x := (xO (times x y)); Rewrite -> add_sym with x := (xO (times x y)); Rewrite <- add_assoc with y := (xO (times x y)); Rewrite -> add_assoc with y := z; Reflexivity. Rewrite IHx; Reflexivity. Reflexivity. Qed. Theorem times_add_distr_l: (x,y,z:positive) (times (add x y) z) = (add (times x z) (times y z)). Proof. Intros x y z; Do 3 Rewrite times_sym with y:=z; Apply times_add_distr. Qed. (** Associativity of multiplication *) Theorem times_assoc : ((x,y,z:positive) (times x (times y z))= (times (times x y) z)). Proof. Intro x;NewInduction x as [x|x|]; Simpl; Intros y z. Rewrite IHx; Rewrite times_add_distr_l; Reflexivity. Rewrite IHx; Reflexivity. Reflexivity. Qed. (** Parity properties of multiplication *) Lemma times_discr_xO_xI : (x,y,z:positive)(times (xI x) z)<>(times (xO y) z). Proof. Intros x y z; NewInduction z as [|z IHz|]; Try Discriminate. Intro H; Apply IHz; Clear IHz. Do 2 Rewrite times_x_double in H. Injection H; Clear H; Intro H; Exact H. Qed. Lemma times_discr_xO : (x,y:positive)(times (xO x) y)<>y. Proof. Intros x y; NewInduction y; Try Discriminate. Rewrite times_x_double; Injection; Assumption. Qed. (** Simplification properties of multiplication *) Theorem simpl_times_r : (x,y,z:positive) (times x z)=(times y z) -> x=y. Proof. Intro x;NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|]; Intros z H; Reflexivity Orelse Apply (f_equal positive) Orelse Apply False_ind. Simpl in H; Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double; Apply simpl_add_l with 1 := H. Apply times_discr_xO_xI with 1 := H. Simpl in H; Rewrite add_sym in H; Apply add_no_neutral with 1 := H. Symmetry in H; Apply times_discr_xO_xI with 1 := H. Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double; Assumption. Apply times_discr_xO with 1:=H. Simpl in H; Symmetry in H; Rewrite add_sym in H; Apply add_no_neutral with 1 := H. Symmetry in H; Apply times_discr_xO with 1:=H. Qed. Theorem simpl_times_l : (x,y,z:positive) (times z x)=(times z y) -> x=y. Proof. Intros x y z H; Apply simpl_times_r with z:=z. Rewrite times_sym with x:=x; Rewrite times_sym with x:=y; Assumption. Qed. (** Inversion of multiplication *) Lemma times_one_inversion_l : (x,y:positive) (times x y)=xH -> x=xH. Proof. Intros x y; NewDestruct x; Simpl. NewDestruct y; Intro; Discriminate. Intro; Discriminate. Reflexivity. Qed. (**********************************************************************) (** Properties of comparison on binary positive numbers *) Theorem compare_convert1 : (x,y:positive) ~(compare x y SUPERIEUR) = EGAL /\ ~(compare x y INFERIEUR) = EGAL. Proof. Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|]; Split;Simpl;Auto; Discriminate Orelse (Elim (IHp q); Auto). Qed. Theorem compare_convert_EGAL : (x,y:positive) (compare x y EGAL) = EGAL -> x=y. Proof. Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|];Simpl;Auto; Intro H; [ Rewrite (IHp q); Trivial | Absurd (compare p q SUPERIEUR)=EGAL ; [ Elim (compare_convert1 p q);Auto | Assumption ] | Discriminate H | Absurd (compare p q INFERIEUR) = EGAL; [ Elim (compare_convert1 p q);Auto | Assumption ] | Rewrite (IHp q);Auto | Discriminate H | Discriminate H | Discriminate H ]. Qed. Lemma ZLSI: (x,y:positive) (compare x y SUPERIEUR) = INFERIEUR -> (compare x y EGAL) = INFERIEUR. Proof. Intro x; Induction x;Intro y; Induction y;Simpl;Auto; Discriminate Orelse Intros H;Discriminate H. Qed. Lemma ZLIS: (x,y:positive) (compare x y INFERIEUR) = SUPERIEUR -> (compare x y EGAL) = SUPERIEUR. Proof. Intro x; Induction x;Intro y; Induction y;Simpl;Auto; Discriminate Orelse Intros H;Discriminate H. Qed. Lemma ZLII: (x,y:positive) (compare x y INFERIEUR) = INFERIEUR -> (compare x y EGAL) = INFERIEUR \/ x = y. Proof. (Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate); Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E; Auto. Qed. Lemma ZLSS: (x,y:positive) (compare x y SUPERIEUR) = SUPERIEUR -> (compare x y EGAL) = SUPERIEUR \/ x = y. Proof. (Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate); Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E; Auto. Qed. Lemma Dcompare : (r:relation) r=EGAL \/ r = INFERIEUR \/ r = SUPERIEUR. Proof. Induction r; Auto. Qed. Tactic Definition ElimPcompare c1 c2:= Elim (Dcompare (compare c1 c2 EGAL)); [ Idtac | Let x = FreshId "H" In Intro x; Case x; Clear x ]. Theorem convert_compare_EGAL: (x:positive)(compare x x EGAL)=EGAL. Intro x; Induction x; Auto. Qed. Lemma Pcompare_antisym : (x,y:positive)(r:relation) (Op (compare x y r)) = (compare y x (Op r)). Proof. Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y; Intro r; Reflexivity Orelse (Symmetry; Assumption) Orelse Discriminate H Orelse Simpl; Apply IHp Orelse Try Rewrite IHp; Try Reflexivity. Qed. Lemma ZC1: (x,y:positive)(compare x y EGAL)=SUPERIEUR -> (compare y x EGAL)=INFERIEUR. Proof. Intros; Change EGAL with (Op EGAL). Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity. Qed. Lemma ZC2: (x,y:positive)(compare x y EGAL)=INFERIEUR -> (compare y x EGAL)=SUPERIEUR. Proof. Intros; Change EGAL with (Op EGAL). Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity. Qed. Lemma ZC3: (x,y:positive)(compare x y EGAL)=EGAL -> (compare y x EGAL)=EGAL. Proof. Intros; Change EGAL with (Op EGAL). Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity. Qed. Lemma ZC4: (x,y:positive) (compare x y EGAL) = (Op (compare y x EGAL)). Proof. Intros; Change 1 EGAL with (Op EGAL). Symmetry; Apply Pcompare_antisym. Qed. (**********************************************************************) (** Properties of subtraction on binary positive numbers *) Lemma ZS: (p:positive_mask) (Zero_suivi_de_mask p) = IsNul -> p = IsNul. Proof. NewDestruct p; Simpl; [ Trivial | Discriminate 1 | Discriminate 1 ]. Qed. Lemma US: (p:positive_mask) ~(Un_suivi_de_mask p)=IsNul. Proof. Induction p; Intros; Discriminate. Qed. Lemma USH: (p:positive_mask) (Un_suivi_de_mask p) = (IsPos xH) -> p = IsNul. Proof. NewDestruct p; Simpl; [ Trivial | Discriminate 1 | Discriminate 1 ]. Qed. Lemma ZSH: (p:positive_mask) ~(Zero_suivi_de_mask p)= (IsPos xH). Proof. Induction p; Intros; Discriminate. Qed. Theorem sub_pos_x_x : (x:positive) (sub_pos x x) = IsNul. Proof. Intro x; NewInduction x as [p IHp|p IHp|]; [ Simpl; Rewrite IHp;Simpl; Trivial | Simpl; Rewrite IHp;Auto | Auto ]. Qed. Lemma ZL10: (x,y:positive) (sub_pos x y) = (IsPos xH) -> (sub_neg x y) = IsNul. Proof. Intro x; NewInduction x as [p|p|]; Intro y; NewDestruct y as [q|q|]; Simpl; Intro H; Try Discriminate H; [ Absurd (Zero_suivi_de_mask (sub_pos p q))=(IsPos xH); [ Apply ZSH | Assumption ] | Assert Heq : (sub_pos p q)=IsNul; [ Apply USH;Assumption | Rewrite Heq; Reflexivity ] | Assert Heq : (sub_neg p q)=IsNul; [ Apply USH;Assumption | Rewrite Heq; Reflexivity ] | Absurd (Zero_suivi_de_mask (sub_pos p q))=(IsPos xH); [ Apply ZSH | Assumption ] | NewDestruct p; Simpl; [ Discriminate H | Discriminate H | Reflexivity ] ]. Qed. (** Properties of subtraction valid only for x>y *) Lemma sub_pos_SUPERIEUR: (x,y:positive)(compare x y EGAL)=SUPERIEUR -> (EX h:positive | (sub_pos x y) = (IsPos h) /\ (add y h) = x /\ (h = xH \/ (sub_neg x y) = (IsPos (sub_un h)))). Proof. Intro x;NewInduction x as [p|p|];Intro y; NewDestruct y as [q|q|]; Simpl; Intro H; Try Discriminate H. NewDestruct (IHp q H) as [z [H4 [H6 H7]]]; Exists (xO z); Split. Rewrite H4; Reflexivity. Split. Simpl; Rewrite H6; Reflexivity. Right; Clear H6; NewDestruct (ZL11 z) as [H8|H8]; [ Rewrite H8; Rewrite H8 in H4; Rewrite ZL10; [ Reflexivity | Assumption ] | Clear H4; NewDestruct H7 as [H9|H9]; [ Absurd z=xH; Assumption | Rewrite H9; Clear H9; NewDestruct z; [ Reflexivity | Reflexivity | Absurd xH=xH; Trivial ]]]. Case ZLSS with 1:=H; [ Intros H3;Elim (IHp q H3); Intros z H4; Exists (xI z); Elim H4;Intros H5 H6;Elim H6;Intros H7 H8; Split; [ Simpl;Rewrite H5;Auto | Split; [ Simpl; Rewrite H7; Trivial | Right; Change (Zero_suivi_de_mask (sub_pos p q))=(IsPos (sub_un (xI z))); Rewrite H5; Auto ]] | Intros H3; Exists xH; Rewrite H3; Split; [ Simpl; Rewrite sub_pos_x_x; Auto | Split; Auto ]]. Exists (xO p); Auto. NewDestruct (IHp q) as [z [H4 [H6 H7]]]. Apply ZLIS; Assumption. NewDestruct (ZL11 z) as [vZ|]; [ Exists xH; Split; [ Rewrite ZL10; [ Reflexivity | Rewrite vZ in H4;Assumption ] | Split; [ Simpl; Rewrite ZL12; Rewrite <- vZ; Rewrite H6; Trivial | Auto ]] | Exists (xI (sub_un z)); NewDestruct H7 as [|H8];[ Absurd z=xH;Assumption | Split; [ Rewrite H8; Trivial | Split; [ Simpl; Rewrite ZL15; [ Rewrite H6;Trivial | Assumption ] | Right; Rewrite H8; Reflexivity]]]]. NewDestruct (IHp q H) as [z [H4 [H6 H7]]]. Exists (xO z); Split; [ Rewrite H4;Auto | Split; [ Simpl;Rewrite H6;Reflexivity | Right; Change (Un_suivi_de_mask (sub_neg p q))=(IsPos (double_moins_un z)); NewDestruct (ZL11 z) as [H8|H8]; [ Rewrite H8; Simpl; Assert H9:(sub_neg p q)=IsNul;[ Apply ZL10;Rewrite <- H8;Assumption | Rewrite H9;Reflexivity ] | NewDestruct H7 as [H9|H9]; [ Absurd z=xH;Auto | Rewrite H9; NewDestruct z; Simpl; [ Reflexivity | Reflexivity | Absurd xH=xH; [Assumption | Reflexivity]]]]]]. Exists (double_moins_un p); Split; [ Reflexivity | Clear IHp; Split; [ NewDestruct p; Simpl; [ Reflexivity | Rewrite is_double_moins_un; Reflexivity | Reflexivity ] | NewDestruct p; [Right|Right|Left]; Reflexivity ]]. Qed. Theorem sub_add: (x,y:positive) (compare x y EGAL) = SUPERIEUR -> (add y (true_sub x y)) = x. Proof. Intros x y H;Elim sub_pos_SUPERIEUR with 1:=H; Intros z H1;Elim H1;Intros H2 H3; Elim H3;Intros H4 H5; Unfold true_sub ;Rewrite H2; Exact H4. Qed.