(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Prop := [l:(list A)](nil A)=l. Lemma Isnil_nil : (Isnil (nil A)). Red; Auto. Qed. Hints Resolve Isnil_nil. Lemma not_Isnil_cons : (a:A)(l:(list A))~(Isnil (cons a l)). Unfold Isnil. Intros; Discriminate. Qed. Hints Resolve Isnil_nil not_Isnil_cons. Lemma Isnil_dec : (l:(list A)){(Isnil l)}+{~(Isnil l)}. Intro l; Case l;Auto. (* Realizer (fun l => match l with | nil => true | _ => false end). *) Qed. (************************) (** The Uncons function *) (************************) Lemma Uncons : (l:(list A)){a : A & { m: (list A) | (cons a m)=l}}+{Isnil l}. Intro l; Case l. Auto. Intros a m; Intros; Left; Exists a; Exists m; Reflexivity. (* Realizer (fun l => match l with | nil => error | (cons a m) => value (a,m) end). *) Qed. (********************************) (** The head function *) (********************************) Lemma Hd : (l:(list A)){a : A | (EX m:(list A) |(cons a m)=l)}+{Isnil l}. Intro l; Case l. Auto. Intros a m; Intros; Left; Exists a; Exists m; Reflexivity. (* Realizer (fun l => match l with | nil => error | (cons a m) => value a end). *) Qed. Lemma Tl : (l:(list A)){m:(list A)| (EX a:A |(cons a m)=l) \/ ((Isnil l) /\ (Isnil m)) }. Intro l; Case l. Exists (nil A); Auto. Intros a m; Intros; Exists m; Left; Exists a; Reflexivity. (* Realizer (fun l => match l with | nil => nil | (cons a m) => m end). *) Qed. (****************************************) (** Length of lists *) (****************************************) (* length is defined in List *) Fixpoint Length_l [l:(list A)] : nat -> nat := [n:nat] Cases l of nil => n | (cons _ m) => (Length_l m (S n)) end. (* A tail recursive version *) Lemma Length_l_pf : (l:(list A))(n:nat){m:nat|(plus n (length l))=m}. NewInduction l as [|a m lrec]. Intro n; Exists n; Simpl; Auto. Intro n; Elim (lrec (S n)); Simpl; Intros. Exists x; Transitivity (S (plus n (length m))); Auto. (* Realizer Length_l. *) Qed. Lemma Length : (l:(list A)){m:nat|(length l)=m}. Intro l. Apply (Length_l_pf l O). (* Realizer (fun l -> Length_l_pf l O). *) Qed. (*******************************) (** Members of lists *) (*******************************) Inductive In_spec [a:A] : (list A) -> Prop := | in_hd : (l:(list A))(In_spec a (cons a l)) | in_tl : (l:(list A))(b:A)(In a l)->(In_spec a (cons b l)). Hints Resolve in_hd in_tl. Hints Unfold In. Hints Resolve in_cons. Theorem In_In_spec : (a:A)(l:(list A))(In a l) <-> (In_spec a l). Split. Elim l; [ Intros; Contradiction | Intros; Elim H0; [ Intros; Rewrite H1; Auto | Auto ]]. Intros; Elim H; Auto. Qed. Inductive AllS [P:A->Prop] : (list A) -> Prop := allS_nil : (AllS P (nil A)) | allS_cons : (a:A)(l:(list A))(P a)->(AllS P l)->(AllS P (cons a l)). Hints Resolve allS_nil allS_cons. Hypothesis eqA_dec : (a,b:A){a=b}+{~a=b}. Fixpoint mem [a:A; l:(list A)] : bool := Cases l of nil => false | (cons b m) => if (eqA_dec a b) then [H]true else [H](mem a m) end. Hints Unfold In. Lemma Mem : (a:A)(l:(list A)){(In a l)}+{(AllS [b:A]~b=a l)}. Intros a l. NewInduction l. Auto. Elim (eqA_dec a a0). Auto. Simpl. Elim IHl; Auto. (* Realizer mem. *) Qed. (*********************************) (** Index of elements *) (*********************************) Require Le. Require Lt. Inductive nth_spec : (list A)->nat->A->Prop := nth_spec_O : (a:A)(l:(list A))(nth_spec (cons a l) (S O) a) | nth_spec_S : (n:nat)(a,b:A)(l:(list A)) (nth_spec l n a)->(nth_spec (cons b l) (S n) a). Hints Resolve nth_spec_O nth_spec_S. Inductive fst_nth_spec : (list A)->nat->A->Prop := fst_nth_O : (a:A)(l:(list A))(fst_nth_spec (cons a l) (S O) a) | fst_nth_S : (n:nat)(a,b:A)(l:(list A))(~a=b)-> (fst_nth_spec l n a)->(fst_nth_spec (cons b l) (S n) a). Hints Resolve fst_nth_O fst_nth_S. Lemma fst_nth_nth : (l:(list A))(n:nat)(a:A)(fst_nth_spec l n a)->(nth_spec l n a). NewInduction 1; Auto. Qed. Hints Immediate fst_nth_nth. Lemma nth_lt_O : (l:(list A))(n:nat)(a:A)(nth_spec l n a)->(lt O n). NewInduction 1; Auto. Qed. Lemma nth_le_length : (l:(list A))(n:nat)(a:A)(nth_spec l n a)->(le n (length l)). NewInduction 1; Simpl; Auto with arith. Qed. Fixpoint Nth_func [l:(list A)] : nat -> (Exc A) := [n:nat] Cases l n of (cons a _) (S O) => (value A a) | (cons _ l') (S (S p)) => (Nth_func l' (S p)) | _ _ => Error end. Lemma Nth : (l:(list A))(n:nat) {a:A|(nth_spec l n a)}+{(n=O)\/(lt (length l) n)}. NewInduction l as [|a l IHl]. Intro n; Case n; Simpl; Auto with arith. Intro n; NewDestruct n as [|[|n1]]; Simpl; Auto. Left; Exists a; Auto. NewDestruct (IHl (S n1)) as [[b]|o]. Left; Exists b; Auto. Right; NewDestruct o. Absurd (S n1)=O; Auto. Auto with arith. (* Realizer Nth_func. *) Qed. Lemma Item : (l:(list A))(n:nat){a:A|(nth_spec l (S n) a)}+{(le (length l) n)}. Intros l n; Case (Nth l (S n)); Intro. Case s; Intro a; Left; Exists a; Auto. Right; Case o; Intro. Absurd (S n)=O; Auto. Auto with arith. Qed. Require Minus. Require DecBool. Fixpoint index_p [a:A;l:(list A)] : nat -> (Exc nat) := Cases l of nil => [p]Error | (cons b m) => [p](ifdec (eqA_dec a b) (Value p) (index_p a m (S p))) end. Lemma Index_p : (a:A)(l:(list A))(p:nat) {n:nat|(fst_nth_spec l (minus (S n) p) a)}+{(AllS [b:A]~a=b l)}. NewInduction l as [|b m irec]. Auto. Intro p. NewDestruct (eqA_dec a b) as [e|e]. Left; Exists p. NewDestruct e; Elim minus_Sn_m; Trivial; Elim minus_n_n; Auto with arith. NewDestruct (irec (S p)) as [[n H]|]. Left; Exists n; Auto with arith. Elim minus_Sn_m; Auto with arith. Apply lt_le_weak; Apply lt_O_minus_lt; Apply nth_lt_O with m a; Auto with arith. Auto. Qed. Lemma Index : (a:A)(l:(list A)) {n:nat|(fst_nth_spec l n a)}+{(AllS [b:A]~a=b l)}. Intros a l; Case (Index_p a l (S O)); Auto. Intros (n,P); Left; Exists n; Auto. Rewrite (minus_n_O n); Trivial. (* Realizer (fun a l -> Index_p a l (S O)). *) Qed. Section Find_sec. Variable R,P : A -> Prop. Inductive InR : (list A) -> Prop := inR_hd : (a:A)(l:(list A))(R a)->(InR (cons a l)) | inR_tl : (a:A)(l:(list A))(InR l)->(InR (cons a l)). Hints Resolve inR_hd inR_tl. Definition InR_inv := [l:(list A)]Cases l of nil => False | (cons b m) => (R b)\/(InR m) end. Lemma InR_INV : (l:(list A))(InR l)->(InR_inv l). NewInduction 1; Simpl; Auto. Qed. Lemma InR_cons_inv : (a:A)(l:(list A))(InR (cons a l))->((R a)\/(InR l)). Intros a l H; Exact (InR_INV H). Qed. Lemma InR_or_app : (l,m:(list A))((InR l)\/(InR m))->(InR (app l m)). Intros l m [|]. NewInduction 1; Simpl; Auto. Intro. NewInduction l; Simpl; Auto. Qed. Lemma InR_app_or : (l,m:(list A))(InR (app l m))->((InR l)\/(InR m)). Intros l m; Elim l; Simpl; Auto. Intros b l' Hrec IAc; Elim (InR_cons_inv IAc);Auto. Intros; Elim Hrec; Auto. Qed. Hypothesis RS_dec : (a:A){(R a)}+{(P a)}. Fixpoint find [l:(list A)] : (Exc A) := Cases l of nil => Error | (cons a m) => (ifdec (RS_dec a) (Value a) (find m)) end. Lemma Find : (l:(list A)){a:A | (In a l) & (R a)}+{(AllS P l)}. NewInduction l as [|a m [[b H1 H2]|H]]; Auto. Left; Exists b; Auto. NewDestruct (RS_dec a). Left; Exists a; Auto. Auto. (* Realizer find. *) Qed. Variable B : Set. Variable T : A -> B -> Prop. Variable TS_dec : (a:A){c:B| (T a c)}+{(P a)}. Fixpoint try_find [l:(list A)] : (Exc B) := Cases l of nil => Error | (cons a l1) => Cases (TS_dec a) of (inleft (exist c _)) => (Value c) | (inright _) => (try_find l1) end end. Lemma Try_find : (l:(list A)){c:B|(EX a:A |(In a l) & (T a c))}+{(AllS P l)}. NewInduction l as [|a m [[b H1]|H]]. Auto. Left; Exists b; NewDestruct H1 as [a' H2 H3]; Exists a'; Auto. NewDestruct (TS_dec a) as [[c H1]|]. Left; Exists c. Exists a; Auto. Auto. (* Realizer try_find. *) Qed. End Find_sec. Section Assoc_sec. Variable B : Set. Fixpoint assoc [a:A;l:(list A*B)] : (Exc B) := Cases l of nil => Error | (cons (a',b) m) => (ifdec (eqA_dec a a') (Value b) (assoc a m)) end. Inductive AllS_assoc [P:A -> Prop]: (list A*B) -> Prop := allS_assoc_nil : (AllS_assoc P (nil A*B)) | allS_assoc_cons : (a:A)(b:B)(l:(list A*B)) (P a)->(AllS_assoc P l)->(AllS_assoc P (cons (a,b) l)). Hints Resolve allS_assoc_nil allS_assoc_cons. (* The specification seems too weak: it is enough to return b if the list has at least an element (a,b); probably the intention is to have the specification (a:A)(l:(list A*B)){b:B|(In_spec (a,b) l)}+{(AllS_assoc [a':A]~(a=a') l)}. *) Lemma Assoc : (a:A)(l:(list A*B))(B+{(AllS_assoc [a':A]~(a=a') l)}). NewInduction l as [|[a' b] m assrec]. Auto. NewDestruct (eqA_dec a a'). Left; Exact b. NewDestruct assrec as [b'|]. Left; Exact b'. Right; Auto. (* Realizer assoc. *) Qed. End Assoc_sec. End Lists. Hints Resolve Isnil_nil not_Isnil_cons in_hd in_tl in_cons allS_nil allS_cons : datatypes. Hints Immediate fst_nth_nth : datatypes.