(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Prop := M0_canon : (mapcanon (M0 A)) | M1_canon : (a:ad) (y:A) (mapcanon (M1 A a y)) | M2_canon : (m1,m2:(Map A)) (mapcanon m1) -> (mapcanon m2) -> (le (2) (MapCard A (M2 A m1 m2))) -> (mapcanon (M2 A m1 m2)). Lemma mapcanon_M2 : (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (le (2) (MapCard A (M2 A m1 m2))). Proof. Intros. Inversion H. Assumption. Qed. Lemma mapcanon_M2_1 : (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (mapcanon m1). Proof. Intros. Inversion H. Assumption. Qed. Lemma mapcanon_M2_2 : (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (mapcanon m2). Proof. Intros. Inversion H. Assumption. Qed. Lemma M2_eqmap_1 : (m0,m1,m2,m3:(Map A)) (eqmap A (M2 A m0 m1) (M2 A m2 m3)) -> (eqmap A m0 m2). Proof. Unfold eqmap eqm. Intros. Rewrite <- (ad_double_div_2 a). Rewrite <- (MapGet_M2_bit_0_0 A ? (ad_double_bit_0 a) m0 m1). Rewrite <- (MapGet_M2_bit_0_0 A ? (ad_double_bit_0 a) m2 m3). Exact (H (ad_double a)). Qed. Lemma M2_eqmap_2 : (m0,m1,m2,m3:(Map A)) (eqmap A (M2 A m0 m1) (M2 A m2 m3)) -> (eqmap A m1 m3). Proof. Unfold eqmap eqm. Intros. Rewrite <- (ad_double_plus_un_div_2 a). Rewrite <- (MapGet_M2_bit_0_1 A ? (ad_double_plus_un_bit_0 a) m0 m1). Rewrite <- (MapGet_M2_bit_0_1 A ? (ad_double_plus_un_bit_0 a) m2 m3). Exact (H (ad_double_plus_un a)). Qed. Lemma mapcanon_unique : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') -> (eqmap A m m') -> m=m'. Proof. Induction m. Induction m'. Trivial. Intros a y H H0 H1. Cut (NONE A)=(MapGet A (M1 A a y) a). Simpl. Rewrite (ad_eq_correct a). Intro. Discriminate H2. Exact (H1 a). Intros. Cut (le (2) (MapCard A (M0 A))). Intro. Elim (le_Sn_O ? H4). Rewrite (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H2). Intros a y. Induction m'. Intros. Cut (MapGet A (M1 A a y) a)=(NONE A). Simpl. Rewrite (ad_eq_correct a). Intro. Discriminate H2. Exact (H1 a). Intros a0 y0 H H0 H1. Cut (MapGet A (M1 A a y) a)=(MapGet A (M1 A a0 y0) a). Simpl. Rewrite (ad_eq_correct a). Intro. Elim (sumbool_of_bool (ad_eq a0 a)). Intro H3. Rewrite H3 in H2. Inversion H2. Rewrite (ad_eq_complete ? ? H3). Reflexivity. Intro H3. Rewrite H3 in H2. Discriminate H2. Exact (H1 a). Intros. Cut (le (2) (MapCard A (M1 A a y))). Intro. Elim (le_Sn_O ? (le_S_n ? ? H4)). Rewrite (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H2). Induction m'. Intros. Cut (le (2) (MapCard A (M0 A))). Intro. Elim (le_Sn_O ? H4). Rewrite <- (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H1). Intros a y H1 H2 H3. Cut (le (2) (MapCard A (M1 A a y))). Intro. Elim (le_Sn_O ? (le_S_n ? ? H4)). Rewrite <- (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H1). Intros. Rewrite (H m2). Rewrite (H0 m3). Reflexivity. Exact (mapcanon_M2_2 ? ? H3). Exact (mapcanon_M2_2 ? ? H4). Exact (M2_eqmap_2 ? ? ? ? H5). Exact (mapcanon_M2_1 ? ? H3). Exact (mapcanon_M2_1 ? ? H4). Exact (M2_eqmap_1 ? ? ? ? H5). Qed. Lemma MapPut1_canon : (p:positive) (a,a':ad) (y,y':A) (mapcanon (MapPut1 A a y a' y' p)). Proof. Induction p. Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M1_canon. Apply M1_canon. Apply le_n. Apply M2_canon. Apply M1_canon. Apply M1_canon. Apply le_n. Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M0_canon. Apply H. Simpl. Rewrite MapCard_Put1_equals_2. Apply le_n. Apply M2_canon. Apply H. Apply M0_canon. Simpl. Rewrite MapCard_Put1_equals_2. Apply le_n. Simpl. Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M1_canon. Apply M1_canon. Simpl. Apply le_n. Apply M2_canon. Apply M1_canon. Apply M1_canon. Simpl. Apply le_n. Qed. Lemma MapPut_canon : (m:(Map A)) (mapcanon m) -> (a:ad) (y:A) (mapcanon (MapPut A m a y)). Proof. Induction m. Intros. Simpl. Apply M1_canon. Intros a0 y0 H a y. Simpl. Case (ad_xor a0 a). Apply M1_canon. Intro. Apply MapPut1_canon. Intros. Simpl. Elim a. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1). Exact (mapcanon_M2_2 m0 m1 H1). Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 ? ? H1). Apply le_plus_plus. Exact (MapCard_Put_lb A m0 ad_z y). Apply le_n. Intro. Case p. Intro. Apply M2_canon. Exact (mapcanon_M2_1 m0 m1 H1). Apply H0. Exact (mapcanon_M2_2 m0 m1 H1). Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 m0 m1 H1). Apply le_reg_l. Exact (MapCard_Put_lb A m1 (ad_x p0) y). Intro. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1). Exact (mapcanon_M2_2 m0 m1 H1). Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 m0 m1 H1). Apply le_reg_r. Exact (MapCard_Put_lb A m0 (ad_x p0) y). Apply M2_canon. Apply (mapcanon_M2_1 m0 m1 H1). Apply H0. Apply (mapcanon_M2_2 m0 m1 H1). Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 m0 m1 H1). Apply le_reg_l. Exact (MapCard_Put_lb A m1 ad_z y). Qed. Lemma MapPut_behind_canon : (m:(Map A)) (mapcanon m) -> (a:ad) (y:A) (mapcanon (MapPut_behind A m a y)). Proof. Induction m. Intros. Simpl. Apply M1_canon. Intros a0 y0 H a y. Simpl. Case (ad_xor a0 a). Apply M1_canon. Intro. Apply MapPut1_canon. Intros. Simpl. Elim a. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1). Exact (mapcanon_M2_2 m0 m1 H1). Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 ? ? H1). Apply le_plus_plus. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m0 ad_z y). Apply le_n. Intro. Case p. Intro. Apply M2_canon. Exact (mapcanon_M2_1 m0 m1 H1). Apply H0. Exact (mapcanon_M2_2 m0 m1 H1). Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 m0 m1 H1). Apply le_reg_l. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m1 (ad_x p0) y). Intro. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1). Exact (mapcanon_M2_2 m0 m1 H1). Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 m0 m1 H1). Apply le_reg_r. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m0 (ad_x p0) y). Apply M2_canon. Apply (mapcanon_M2_1 m0 m1 H1). Apply H0. Apply (mapcanon_M2_2 m0 m1 H1). Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 m0 m1 H1). Apply le_reg_l. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m1 ad_z y). Qed. Lemma makeM2_canon : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') -> (mapcanon (makeM2 A m m')). Proof. Intro. Case m. Intro. Case m'. Intros. Exact M0_canon. Intros a y H H0. Exact (M1_canon (ad_double_plus_un a) y). Intros. Simpl. (Apply M2_canon; Try Assumption). Exact (mapcanon_M2 m0 m1 H0). Intros a y m'. Case m'. Intros. Exact (M1_canon (ad_double a) y). Intros a0 y0 H H0. Simpl. (Apply M2_canon; Try Assumption). Apply le_n. Intros. Simpl. (Apply M2_canon; Try Assumption). Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H0). Exact (le_plus_r (MapCard A (M1 A a y)) (MapCard A (M2 A m0 m1))). Simpl. Intros. (Apply M2_canon; Try Assumption). Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H). Exact (le_plus_l (MapCard A (M2 A m0 m1)) (MapCard A m')). Qed. Fixpoint MapCanonicalize [m:(Map A)] : (Map A) := Cases m of (M2 m0 m1) => (makeM2 A (MapCanonicalize m0) (MapCanonicalize m1)) | _ => m end. Lemma mapcanon_exists_1 : (m:(Map A)) (eqmap A m (MapCanonicalize m)). Proof. Induction m. Apply eqmap_refl. Intros. Apply eqmap_refl. Intros. Simpl. Unfold eqmap eqm. Intro. Rewrite (makeM2_M2 A (MapCanonicalize m0) (MapCanonicalize m1) a). Rewrite MapGet_M2_bit_0_if. Rewrite MapGet_M2_bit_0_if. Rewrite <- (H (ad_div_2 a)). Rewrite <- (H0 (ad_div_2 a)). Reflexivity. Qed. Lemma mapcanon_exists_2 : (m:(Map A)) (mapcanon (MapCanonicalize m)). Proof. Induction m. Apply M0_canon. Intros. Simpl. Apply M1_canon. Intros. Simpl. (Apply makeM2_canon; Assumption). Qed. Lemma mapcanon_exists : (m:(Map A)) {m':(Map A) | (eqmap A m m') /\ (mapcanon m')}. Proof. Intro. Split with (MapCanonicalize m). Split. Apply mapcanon_exists_1. Apply mapcanon_exists_2. Qed. Lemma MapRemove_canon : (m:(Map A)) (mapcanon m) -> (a:ad) (mapcanon (MapRemove A m a)). Proof. Induction m. Intros. Exact M0_canon. Intros a y H a0. Simpl. Case (ad_eq a a0). Exact M0_canon. Assumption. Intros. Simpl. Case (ad_bit_0 a). Apply makeM2_canon. Exact (mapcanon_M2_1 ? ? H1). Apply H0. Exact (mapcanon_M2_2 ? ? H1). Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H1). Exact (mapcanon_M2_2 ? ? H1). Qed. Lemma MapMerge_canon : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') -> (mapcanon (MapMerge A m m')). Proof. Induction m. Intros. Exact H0. Simpl. Intros a y m' H H0. Exact (MapPut_behind_canon m' H0 a y). Induction m'. Intros. Exact H1. Intros a y H1 H2. Unfold MapMerge. Exact (MapPut_canon ? H1 a y). Intros. Simpl. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H3). Exact (mapcanon_M2_1 ? ? H4). Apply H0. Exact (mapcanon_M2_2 ? ? H3). Exact (mapcanon_M2_2 ? ? H4). Change (le (2) (MapCard A (MapMerge A (M2 A m0 m1) (M2 A m2 m3)))). Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H3). Exact (MapMerge_Card_lb_l A (M2 A m0 m1) (M2 A m2 m3)). Qed. Lemma MapDelta_canon : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') -> (mapcanon (MapDelta A m m')). Proof. Induction m. Intros. Exact H0. Simpl. Intros a y m' H H0. Case (MapGet A m' a). Exact (MapPut_canon m' H0 a y). Intro. Exact (MapRemove_canon m' H0 a). Induction m'. Intros. Exact H1. Unfold MapDelta. Intros a y H1 H2. Case (MapGet A (M2 A m0 m1) a). Exact (MapPut_canon ? H1 a y). Intro. Exact (MapRemove_canon ? H1 a). Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H3). Exact (mapcanon_M2_1 ? ? H4). Apply H0. Exact (mapcanon_M2_2 ? ? H3). Exact (mapcanon_M2_2 ? ? H4). Qed. Variable B : Set. Lemma MapDomRestrTo_canon : (m:(Map A)) (mapcanon m) -> (m':(Map B)) (mapcanon (MapDomRestrTo A B m m')). Proof. Induction m. Intros. Exact M0_canon. Simpl. Intros a y H m'. Case (MapGet B m' a). Exact M0_canon. Intro. Apply M1_canon. Induction m'. Exact M0_canon. Unfold MapDomRestrTo. Intros a y. Case (MapGet A (M2 A m0 m1) a). Exact M0_canon. Intro. Apply M1_canon. Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1). Apply H0. Exact (mapcanon_M2_2 m0 m1 H1). Qed. Lemma MapDomRestrBy_canon : (m:(Map A)) (mapcanon m) -> (m':(Map B)) (mapcanon (MapDomRestrBy A B m m')). Proof. Induction m. Intros. Exact M0_canon. Simpl. Intros a y H m'. Case (MapGet B m' a). Assumption. Intro. Exact M0_canon. Induction m'. Exact H1. Intros a y. Simpl. Case (ad_bit_0 a). Apply makeM2_canon. Exact (mapcanon_M2_1 ? ? H1). Apply MapRemove_canon. Exact (mapcanon_M2_2 ? ? H1). Apply makeM2_canon. Apply MapRemove_canon. Exact (mapcanon_M2_1 ? ? H1). Exact (mapcanon_M2_2 ? ? H1). Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H1). Apply H0. Exact (mapcanon_M2_2 ? ? H1). Qed. Lemma Map_of_alist_canon : (l:(alist A)) (mapcanon (Map_of_alist A l)). Proof. Induction l. Exact M0_canon. Intro r. Elim r. Intros a y l0 H. Simpl. Apply MapPut_canon. Assumption. Qed. Lemma MapSubset_c_1 : (m:(Map A)) (m':(Map B)) (mapcanon m) -> (MapSubset A B m m') -> (MapDomRestrBy A B m m')=(M0 A). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon. Assumption. Apply M0_canon. Exact (MapSubset_imp_2 ? ? m m' H0). Qed. Lemma MapSubset_c_2 : (m:(Map A)) (m':(Map B)) (MapDomRestrBy A B m m')=(M0 A) -> (MapSubset A B m m'). Proof. Intros. Apply MapSubset_2_imp. Unfold MapSubset_2. Rewrite H. Apply eqmap_refl. Qed. End MapCanon. Section FSetCanon. Variable A : Set. Lemma MapDom_canon : (m:(Map A)) (mapcanon A m) -> (mapcanon unit (MapDom A m)). Proof. Induction m. Intro. Exact (M0_canon unit). Intros a y H. Exact (M1_canon unit a ?). Intros. Simpl. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 A ? ? H1). Apply H0. Exact (mapcanon_M2_2 A ? ? H1). Change (le (2) (MapCard unit (MapDom A (M2 A m0 m1)))). Rewrite <- MapCard_Dom. Exact (mapcanon_M2 A ? ? H1). Qed. End FSetCanon. Section MapFoldCanon. Variable A, B : Set. Lemma MapFold_canon_1 : (m0:(Map B)) (mapcanon B m0) -> (op : (Map B) -> (Map B) -> (Map B)) ((m1:(Map B)) (mapcanon B m1) -> (m2:(Map B)) (mapcanon B m2) -> (mapcanon B (op m1 m2))) -> (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) -> (m:(Map A)) (pf : ad->ad) (mapcanon B (MapFold1 A (Map B) m0 op f pf m)). Proof. Induction m. Intro. Exact H. Intros a y pf. Simpl. Apply H1. Intros. Simpl. Apply H0. Apply H2. Apply H3. Qed. Lemma MapFold_canon : (m0:(Map B)) (mapcanon B m0) -> (op : (Map B) -> (Map B) -> (Map B)) ((m1:(Map B)) (mapcanon B m1) -> (m2:(Map B)) (mapcanon B m2) -> (mapcanon B (op m1 m2))) -> (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) -> (m:(Map A)) (mapcanon B (MapFold A (Map B) m0 op f m)). Proof. Intros. Exact (MapFold_canon_1 m0 H op H0 f H1 m [a:ad]a). Qed. Lemma MapCollect_canon : (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) -> (m:(Map A)) (mapcanon B (MapCollect A B f m)). Proof. Intros. Rewrite MapCollect_as_Fold. Apply MapFold_canon. Apply M0_canon. Intros. Exact (MapMerge_canon B m1 m2 H0 H1). Assumption. Qed. End MapFoldCanon.