(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (a:ad) (y:A) (MapPut A m a y)=(MapMerge A m (M1 A a y)). Proof. Intros. Apply mapcanon_unique. Exact (MapPut_canon A m H a y). Apply MapMerge_canon. Assumption. Apply M1_canon. Apply MapPut_as_Merge. Qed. Lemma MapPut_behind_as_Merge_c : (m:(Map A)) (mapcanon A m) -> (a:ad) (y:A) (MapPut_behind A m a y)=(MapMerge A (M1 A a y) m). Proof. Intros. Apply mapcanon_unique. Exact (MapPut_behind_canon A m H a y). Apply MapMerge_canon. Apply M1_canon. Assumption. Apply MapPut_behind_as_Merge. Qed. Lemma MapMerge_empty_m_c : (m:(Map A)) (MapMerge A (M0 A) m)=m. Proof. Trivial. Qed. Lemma MapMerge_assoc_c : (m,m',m'':(Map A)) (mapcanon A m) -> (mapcanon A m') -> (mapcanon A m'') -> (MapMerge A (MapMerge A m m') m'')=(MapMerge A m (MapMerge A m' m'')). Proof. Intros. Apply mapcanon_unique. (Apply MapMerge_canon; Try Assumption). (Apply MapMerge_canon; Try Assumption). (Apply MapMerge_canon; Try Assumption). (Apply MapMerge_canon; Try Assumption). Apply MapMerge_assoc. Qed. Lemma MapMerge_idempotent_c : (m:(Map A)) (mapcanon A m) -> (MapMerge A m m)=m. Proof. Intros. Apply mapcanon_unique. (Apply MapMerge_canon; Assumption). Assumption. Apply MapMerge_idempotent. Qed. Lemma MapMerge_RestrTo_l_c : (m,m',m'':(Map A)) (mapcanon A m) -> (mapcanon A m'') -> (MapMerge A (MapDomRestrTo A A m m') m'')= (MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'')). Proof. Intros. Apply mapcanon_unique. Apply MapMerge_canon. Apply MapDomRestrTo_canon; Assumption. Assumption. Apply MapDomRestrTo_canon; Apply MapMerge_canon; Assumption. Apply MapMerge_RestrTo_l. Qed. Lemma MapRemove_as_RestrBy_c : (m:(Map A)) (mapcanon A m) -> (a:ad) (y:B) (MapRemove A m a)=(MapDomRestrBy A B m (M1 B a y)). Proof. Intros. Apply mapcanon_unique. (Apply MapRemove_canon; Assumption). (Apply MapDomRestrBy_canon; Assumption). Apply MapRemove_as_RestrBy. Qed. Lemma MapDomRestrTo_assoc_c : (m:(Map A)) (m':(Map B)) (m'':(Map C)) (mapcanon A m) -> (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')= (MapDomRestrTo A B m (MapDomRestrTo B C m' m'')). Proof. Intros. Apply mapcanon_unique. (Apply MapDomRestrTo_canon; Try Assumption). (Apply MapDomRestrTo_canon; Try Assumption). (Apply MapDomRestrTo_canon; Try Assumption). Apply MapDomRestrTo_assoc. Qed. Lemma MapDomRestrTo_idempotent_c : (m:(Map A)) (mapcanon A m) -> (MapDomRestrTo A A m m)=m. Proof. Intros. Apply mapcanon_unique. (Apply MapDomRestrTo_canon; Assumption). Assumption. Apply MapDomRestrTo_idempotent. Qed. Lemma MapDomRestrTo_Dom_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) -> (MapDomRestrTo A B m m')=(MapDomRestrTo A unit m (MapDom B m')). Proof. Intros. Apply mapcanon_unique. (Apply MapDomRestrTo_canon; Assumption). (Apply MapDomRestrTo_canon; Assumption). Apply MapDomRestrTo_Dom. Qed. Lemma MapDomRestrBy_Dom_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) -> (MapDomRestrBy A B m m')=(MapDomRestrBy A unit m (MapDom B m')). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon; Assumption. Apply MapDomRestrBy_canon; Assumption. Apply MapDomRestrBy_Dom. Qed. Lemma MapDomRestrBy_By_c : (m:(Map A)) (m':(Map B)) (m'':(Map B)) (mapcanon A m) -> (MapDomRestrBy A B (MapDomRestrBy A B m m') m'')= (MapDomRestrBy A B m (MapMerge B m' m'')). Proof. Intros. Apply mapcanon_unique. (Apply MapDomRestrBy_canon; Try Assumption). (Apply MapDomRestrBy_canon; Try Assumption). (Apply MapDomRestrBy_canon; Try Assumption). Apply MapDomRestrBy_By. Qed. Lemma MapDomRestrBy_By_comm_c : (m:(Map A)) (m':(Map B)) (m'':(Map C)) (mapcanon A m) -> (MapDomRestrBy A C (MapDomRestrBy A B m m') m'')= (MapDomRestrBy A B (MapDomRestrBy A C m m'') m'). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon. (Apply MapDomRestrBy_canon; Assumption). Apply MapDomRestrBy_canon. (Apply MapDomRestrBy_canon; Assumption). Apply MapDomRestrBy_By_comm. Qed. Lemma MapDomRestrBy_To_c : (m:(Map A)) (m':(Map B)) (m'':(Map C)) (mapcanon A m) -> (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')= (MapDomRestrTo A B m (MapDomRestrBy B C m' m'')). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon. (Apply MapDomRestrTo_canon; Assumption). (Apply MapDomRestrTo_canon; Assumption). Apply MapDomRestrBy_To. Qed. Lemma MapDomRestrBy_To_comm_c : (m:(Map A)) (m':(Map B)) (m'':(Map C)) (mapcanon A m) -> (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')= (MapDomRestrTo A B (MapDomRestrBy A C m m'') m'). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon. Apply MapDomRestrTo_canon; Assumption. Apply MapDomRestrTo_canon. Apply MapDomRestrBy_canon; Assumption. Apply MapDomRestrBy_To_comm. Qed. Lemma MapDomRestrTo_By_c : (m:(Map A)) (m':(Map B)) (m'':(Map C)) (mapcanon A m) -> (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')= (MapDomRestrTo A C m (MapDomRestrBy C B m'' m')). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrTo_canon. Apply MapDomRestrBy_canon; Assumption. Apply MapDomRestrTo_canon; Assumption. Apply MapDomRestrTo_By. Qed. Lemma MapDomRestrTo_By_comm_c : (m:(Map A)) (m':(Map B)) (m'':(Map C)) (mapcanon A m) -> (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')= (MapDomRestrBy A B (MapDomRestrTo A C m m'') m'). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrTo_canon. (Apply MapDomRestrBy_canon; Assumption). Apply MapDomRestrBy_canon. (Apply MapDomRestrTo_canon; Assumption). Apply MapDomRestrTo_By_comm. Qed. Lemma MapDomRestrTo_To_comm_c : (m:(Map A)) (m':(Map B)) (m'':(Map C)) (mapcanon A m) -> (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')= (MapDomRestrTo A B (MapDomRestrTo A C m m'') m'). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrTo_canon. Apply MapDomRestrTo_canon; Assumption. Apply MapDomRestrTo_canon. Apply MapDomRestrTo_canon; Assumption. Apply MapDomRestrTo_To_comm. Qed. Lemma MapMerge_DomRestrTo_c : (m,m':(Map A)) (m'':(Map B)) (mapcanon A m) -> (mapcanon A m') -> (MapDomRestrTo A B (MapMerge A m m') m'')= (MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'')). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrTo_canon. (Apply MapMerge_canon; Assumption). Apply MapMerge_canon. (Apply MapDomRestrTo_canon; Assumption). (Apply MapDomRestrTo_canon; Assumption). Apply MapMerge_DomRestrTo. Qed. Lemma MapMerge_DomRestrBy_c : (m,m':(Map A)) (m'':(Map B)) (mapcanon A m) -> (mapcanon A m') -> (MapDomRestrBy A B (MapMerge A m m') m'')= (MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'')). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon. Apply MapMerge_canon; Assumption. Apply MapMerge_canon. Apply MapDomRestrBy_canon; Assumption. Apply MapDomRestrBy_canon; Assumption. Apply MapMerge_DomRestrBy. Qed. Lemma MapDelta_nilpotent_c : (m:(Map A)) (mapcanon A m) -> (MapDelta A m m)=(M0 A). Proof. Intros. Apply mapcanon_unique. (Apply MapDelta_canon; Assumption). Apply M0_canon. Apply MapDelta_nilpotent. Qed. Lemma MapDelta_as_Merge_c : (m,m':(Map A)) (mapcanon A m) -> (mapcanon A m') -> (MapDelta A m m')= (MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m)). Proof. Intros. Apply mapcanon_unique. (Apply MapDelta_canon; Assumption). (Apply MapMerge_canon; Apply MapDomRestrBy_canon; Assumption). Apply MapDelta_as_Merge. Qed. Lemma MapDelta_as_DomRestrBy_c : (m,m':(Map A)) (mapcanon A m) -> (mapcanon A m') -> (MapDelta A m m')= (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')). Proof. Intros. Apply mapcanon_unique. Apply MapDelta_canon; Assumption. Apply MapDomRestrBy_canon. (Apply MapMerge_canon; Assumption). Apply MapDelta_as_DomRestrBy. Qed. Lemma MapDelta_as_DomRestrBy_2_c : (m,m':(Map A)) (mapcanon A m) -> (mapcanon A m') -> (MapDelta A m m')= (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m)). Proof. Intros. Apply mapcanon_unique. (Apply MapDelta_canon; Assumption). Apply MapDomRestrBy_canon. Apply MapMerge_canon; Assumption. Apply MapDelta_as_DomRestrBy_2. Qed. Lemma MapDelta_sym_c : (m,m':(Map A)) (mapcanon A m) -> (mapcanon A m') -> (MapDelta A m m')=(MapDelta A m' m). Proof. Intros. Apply mapcanon_unique. (Apply MapDelta_canon; Assumption). (Apply MapDelta_canon; Assumption). Apply MapDelta_sym. Qed. Lemma MapDom_Split_1_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) -> m=(MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m')). Proof. Intros. Apply mapcanon_unique. Assumption. Apply MapMerge_canon. Apply MapDomRestrTo_canon; Assumption. Apply MapDomRestrBy_canon; Assumption. Apply MapDom_Split_1. Qed. Lemma MapDom_Split_2_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) -> m=(MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m')). Proof. Intros. Apply mapcanon_unique. Assumption. Apply MapMerge_canon. (Apply MapDomRestrBy_canon; Assumption). (Apply MapDomRestrTo_canon; Assumption). Apply MapDom_Split_2. Qed. Lemma MapDom_Split_3_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) -> (MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'))= (M0 A). Proof. Intros. Apply mapcanon_unique. Apply MapDomRestrTo_canon. Apply MapDomRestrTo_canon; Assumption. Apply M0_canon. Apply MapDom_Split_3. Qed. Lemma Map_of_alist_of_Map_c : (m:(Map A)) (mapcanon A m) -> (Map_of_alist A (alist_of_Map A m))=m. Proof. Intros. (Apply mapcanon_unique; Try Assumption). Apply Map_of_alist_canon. Apply Map_of_alist_of_Map. Qed. Lemma alist_of_Map_of_alist_c : (l:(alist A)) (alist_sorted_2 A l) -> (alist_of_Map A (Map_of_alist A l))=l. Proof. Intros. Apply alist_canonical. Apply alist_of_Map_of_alist. Apply alist_of_Map_sorts2. Assumption. Qed. Lemma MapSubset_antisym_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) -> (mapcanon B m') -> (MapSubset A B m m') -> (MapSubset B A m' m) -> (MapDom A m)=(MapDom B m'). Proof. Intros. Apply (mapcanon_unique unit). (Apply MapDom_canon; Assumption). (Apply MapDom_canon; Assumption). (Apply MapSubset_antisym; Assumption). Qed. Lemma FSubset_antisym_c : (s,s':FSet) (mapcanon unit s) -> (mapcanon unit s') -> (MapSubset ? ? s s') -> (MapSubset ? ? s' s) -> s=s'. Proof. Intros. Apply (mapcanon_unique unit); Try Assumption. Apply FSubset_antisym; Assumption. Qed. Lemma MapDisjoint_empty_c : (m:(Map A)) (mapcanon A m) -> (MapDisjoint A A m m) -> m=(M0 A). Proof. Intros. Apply mapcanon_unique; Try Assumption; Try Apply M0_canon. Apply MapDisjoint_empty; Assumption. Qed. Lemma MapDelta_disjoint_c : (m,m':(Map A)) (mapcanon A m) -> (mapcanon A m') -> (MapDisjoint A A m m') -> (MapDelta A m m')=(MapMerge A m m'). Proof. Intros. Apply mapcanon_unique. (Apply MapDelta_canon; Assumption). (Apply MapMerge_canon; Assumption). Apply MapDelta_disjoint; Assumption. Qed. End MapC. Lemma FSetDelta_assoc_c : (s,s',s'':FSet) (mapcanon unit s) -> (mapcanon unit s') -> (mapcanon unit s'') -> (MapDelta ? (MapDelta ? s s') s'')=(MapDelta ? s (MapDelta ? s' s'')). Proof. Intros. Apply (mapcanon_unique unit). Apply MapDelta_canon. (Apply MapDelta_canon; Assumption). Assumption. Apply MapDelta_canon. Assumption. (Apply MapDelta_canon; Assumption). Apply FSetDelta_assoc; Assumption. Qed. Lemma FSet_ext_c : (s,s':FSet) (mapcanon unit s) -> (mapcanon unit s') -> ((a:ad) (in_FSet a s)=(in_FSet a s')) -> s=s'. Proof. Intros. (Apply (mapcanon_unique unit); Try Assumption). Apply FSet_ext. Assumption. Qed. Lemma FSetUnion_comm_c : (s,s':FSet) (mapcanon unit s) -> (mapcanon unit s') -> (FSetUnion s s')=(FSetUnion s' s). Proof. Intros. Apply (mapcanon_unique unit); Try (Unfold FSetUnion; Apply MapMerge_canon; Assumption). Apply FSetUnion_comm. Qed. Lemma FSetUnion_assoc_c : (s,s',s'':FSet) (mapcanon unit s) -> (mapcanon unit s') -> (mapcanon unit s'') -> (FSetUnion (FSetUnion s s') s'')=(FSetUnion s (FSetUnion s' s'')). Proof. Exact (MapMerge_assoc_c unit). Qed. Lemma FSetUnion_M0_s_c : (s:FSet) (FSetUnion (M0 unit) s)=s. Proof. Exact (MapMerge_empty_m_c unit). Qed. Lemma FSetUnion_s_M0_c : (s:FSet) (FSetUnion s (M0 unit))=s. Proof. Exact (MapMerge_m_empty_1 unit). Qed. Lemma FSetUnion_idempotent : (s:FSet) (mapcanon unit s) -> (FSetUnion s s)=s. Proof. Exact (MapMerge_idempotent_c unit). Qed. Lemma FSetInter_comm_c : (s,s':FSet) (mapcanon unit s) -> (mapcanon unit s') -> (FSetInter s s')=(FSetInter s' s). Proof. Intros. Apply (mapcanon_unique unit); Try (Unfold FSetInter; Apply MapDomRestrTo_canon; Assumption). Apply FSetInter_comm. Qed. Lemma FSetInter_assoc_c : (s,s',s'':FSet) (mapcanon unit s) -> (FSetInter (FSetInter s s') s'')=(FSetInter s (FSetInter s' s'')). Proof. Exact (MapDomRestrTo_assoc_c unit unit unit). Qed. Lemma FSetInter_M0_s_c : (s:FSet) (FSetInter (M0 unit) s)=(M0 unit). Proof. Trivial. Qed. Lemma FSetInter_s_M0_c : (s:FSet) (FSetInter s (M0 unit))=(M0 unit). Proof. Exact (MapDomRestrTo_m_empty_1 unit unit). Qed. Lemma FSetInter_idempotent : (s:FSet) (mapcanon unit s) -> (FSetInter s s)=s. Proof. Exact (MapDomRestrTo_idempotent_c unit). Qed. Lemma FSetUnion_Inter_l_c : (s,s',s'':FSet) (mapcanon unit s) -> (mapcanon unit s'') -> (FSetUnion (FSetInter s s') s'')=(FSetInter (FSetUnion s s'') (FSetUnion s' s'')). Proof. Intros. Apply (mapcanon_unique unit). Unfold FSetUnion. (Apply MapMerge_canon; Try Assumption). Unfold FSetInter. (Apply MapDomRestrTo_canon; Assumption). Unfold FSetInter; Unfold FSetUnion; Apply MapDomRestrTo_canon; Apply MapMerge_canon; Assumption. Apply FSetUnion_Inter_l. Qed. Lemma FSetUnion_Inter_r : (s,s',s'':FSet) (mapcanon unit s) -> (mapcanon unit s') -> (FSetUnion s (FSetInter s' s''))=(FSetInter (FSetUnion s s') (FSetUnion s s'')). Proof. Intros. Apply (mapcanon_unique unit). Unfold FSetUnion. (Apply MapMerge_canon; Try Assumption). Unfold FSetInter. (Apply MapDomRestrTo_canon; Assumption). Unfold FSetInter; Unfold FSetUnion; Apply MapDomRestrTo_canon; Apply MapMerge_canon; Assumption. Apply FSetUnion_Inter_r. Qed. Lemma FSetInter_Union_l_c : (s,s',s'':FSet) (mapcanon unit s) -> (mapcanon unit s') -> (FSetInter (FSetUnion s s') s'')=(FSetUnion (FSetInter s s'') (FSetInter s' s'')). Proof. Intros. Apply (mapcanon_unique unit). Unfold FSetInter. Apply MapDomRestrTo_canon; Try Assumption. Unfold FSetUnion. Apply MapMerge_canon; Assumption. Unfold FSetUnion; Unfold FSetInter; Apply MapMerge_canon; Apply MapDomRestrTo_canon; Assumption. Apply FSetInter_Union_l. Qed. Lemma FSetInter_Union_r : (s,s',s'':FSet) (mapcanon unit s) -> (mapcanon unit s') -> (FSetInter s (FSetUnion s' s''))=(FSetUnion (FSetInter s s') (FSetInter s s'')). Proof. Intros. Apply (mapcanon_unique unit). Unfold FSetInter. Apply MapDomRestrTo_canon; Try Assumption. Unfold FSetUnion. Apply MapMerge_canon; Unfold FSetInter; Apply MapDomRestrTo_canon; Assumption. Apply FSetInter_Union_r. Qed.