(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (ad_less_1 (ad_div_2 a) (ad_div_2 a') p') | _ => (andb (negb (ad_bit_0 a)) (ad_bit_0 a')) end. Definition ad_less := [a,a':ad] Cases (ad_xor a a') of ad_z => false | (ad_x p) => (ad_less_1 a a' p) end. Lemma ad_bit_0_less : (a,a':ad) (ad_bit_0 a)=false -> (ad_bit_0 a')=true -> (ad_less a a')=true. Proof. Intros. Elim (ad_sum (ad_xor a a')). Intro H1. Elim H1. Intros p H2. Unfold ad_less. Rewrite H2. Generalize H2. Elim p. Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity. Intros. Cut (ad_bit_0 (ad_xor a a'))=false. Intro. Rewrite (ad_xor_bit_0 a a') in H5. Rewrite H in H5. Rewrite H0 in H5. Discriminate H5. Rewrite H4. Reflexivity. Intro. Simpl. Rewrite H. Rewrite H0. Reflexivity. Intro H1. Cut (ad_bit_0 (ad_xor a a'))=false. Intro. Rewrite (ad_xor_bit_0 a a') in H2. Rewrite H in H2. Rewrite H0 in H2. Discriminate H2. Rewrite H1. Reflexivity. Qed. Lemma ad_bit_0_gt : (a,a':ad) (ad_bit_0 a)=true -> (ad_bit_0 a')=false -> (ad_less a a')=false. Proof. Intros. Elim (ad_sum (ad_xor a a')). Intro H1. Elim H1. Intros p H2. Unfold ad_less. Rewrite H2. Generalize H2. Elim p. Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity. Intros. Cut (ad_bit_0 (ad_xor a a'))=false. Intro. Rewrite (ad_xor_bit_0 a a') in H5. Rewrite H in H5. Rewrite H0 in H5. Discriminate H5. Rewrite H4. Reflexivity. Intro. Simpl. Rewrite H. Rewrite H0. Reflexivity. Intro H1. Unfold ad_less. Rewrite H1. Reflexivity. Qed. Lemma ad_less_not_refl : (a:ad) (ad_less a a)=false. Proof. Intro. Unfold ad_less. Rewrite (ad_xor_nilpotent a). Reflexivity. Qed. Lemma ad_ind_double : (a:ad)(P:ad->Prop) (P ad_z) -> ((a:ad) (P a) -> (P (ad_double a))) -> ((a:ad) (P a) -> (P (ad_double_plus_un a))) -> (P a). Proof. Intros; Elim a. Trivial. Induction p. Intros. Apply (H1 (ad_x p0)); Trivial. Intros; Apply (H0 (ad_x p0)); Trivial. Intros; Apply (H1 ad_z); Assumption. Qed. Lemma ad_rec_double : (a:ad)(P:ad->Set) (P ad_z) -> ((a:ad) (P a) -> (P (ad_double a))) -> ((a:ad) (P a) -> (P (ad_double_plus_un a))) -> (P a). Proof. Intros; Elim a. Trivial. Induction p. Intros. Apply (H1 (ad_x p0)); Trivial. Intros; Apply (H0 (ad_x p0)); Trivial. Intros; Apply (H1 ad_z); Assumption. Qed. Lemma ad_less_def_1 : (a,a':ad) (ad_less (ad_double a) (ad_double a'))=(ad_less a a'). Proof. Induction a. Induction a'. Reflexivity. Trivial. Induction a'. Unfold ad_less. Simpl. (Elim p; Trivial). Unfold ad_less. Simpl. Intro. Case (p_xor p p0). Reflexivity. Trivial. Qed. Lemma ad_less_def_2 : (a,a':ad) (ad_less (ad_double_plus_un a) (ad_double_plus_un a'))=(ad_less a a'). Proof. Induction a. Induction a'. Reflexivity. Trivial. Induction a'. Unfold ad_less. Simpl. (Elim p; Trivial). Unfold ad_less. Simpl. Intro. Case (p_xor p p0). Reflexivity. Trivial. Qed. Lemma ad_less_def_3 : (a,a':ad) (ad_less (ad_double a) (ad_double_plus_un a'))=true. Proof. Intros. Apply ad_bit_0_less. Apply ad_double_bit_0. Apply ad_double_plus_un_bit_0. Qed. Lemma ad_less_def_4 : (a,a':ad) (ad_less (ad_double_plus_un a) (ad_double a'))=false. Proof. Intros. Apply ad_bit_0_gt. Apply ad_double_plus_un_bit_0. Apply ad_double_bit_0. Qed. Lemma ad_less_z : (a:ad) (ad_less a ad_z)=false. Proof. Induction a. Reflexivity. Unfold ad_less. Intro. Rewrite (ad_xor_neutral_right (ad_x p)). (Elim p; Trivial). Qed. Lemma ad_z_less_1 : (a:ad) (ad_less ad_z a)=true -> {p:positive | a=(ad_x p)}. Proof. Induction a. Intro. Discriminate H. Intros. Split with p. Reflexivity. Qed. Lemma ad_z_less_2 : (a:ad) (ad_less ad_z a)=false -> a=ad_z. Proof. Induction a. Trivial. Unfold ad_less. Simpl. Cut (p:positive)(ad_less_1 ad_z (ad_x p) p)=false->False. Intros. Elim (H p H0). Induction p. Intros. Discriminate H0. Intros. Exact (H H0). Intro. Discriminate H. Qed. Lemma ad_less_trans : (a,a',a'':ad) (ad_less a a')=true -> (ad_less a' a'')=true -> (ad_less a a'')=true. Proof. Intro a. Apply ad_ind_double with P:=[a:ad] (a',a'':ad) (ad_less a a')=true ->(ad_less a' a'')=true->(ad_less a a'')=true. Intros. Elim (sumbool_of_bool (ad_less ad_z a'')). Trivial. Intro H1. Rewrite (ad_z_less_2 a'' H1) in H0. Rewrite (ad_less_z a') in H0. Discriminate H0. Intros a0 H a'. Apply ad_ind_double with P:=[a':ad] (a'':ad) (ad_less (ad_double a0) a')=true ->(ad_less a' a'')=true->(ad_less (ad_double a0) a'')=true. Intros. Rewrite (ad_less_z (ad_double a0)) in H0. Discriminate H0. Intros a1 H0 a'' H1. Rewrite (ad_less_def_1 a0 a1) in H1. Apply ad_ind_double with P:=[a'':ad] (ad_less (ad_double a1) a'')=true ->(ad_less (ad_double a0) a'')=true. Intro. Rewrite (ad_less_z (ad_double a1)) in H2. Discriminate H2. Intros. Rewrite (ad_less_def_1 a1 a2) in H3. Rewrite (ad_less_def_1 a0 a2). Exact (H a1 a2 H1 H3). Intros. Apply ad_less_def_3. Intros a1 H0 a'' H1. Apply ad_ind_double with P:=[a'':ad] (ad_less (ad_double_plus_un a1) a'')=true ->(ad_less (ad_double a0) a'')=true. Intro. Rewrite (ad_less_z (ad_double_plus_un a1)) in H2. Discriminate H2. Intros. Rewrite (ad_less_def_4 a1 a2) in H3. Discriminate H3. Intros. Apply ad_less_def_3. Intros a0 H a'. Apply ad_ind_double with P:=[a':ad] (a'':ad) (ad_less (ad_double_plus_un a0) a')=true ->(ad_less a' a'')=true ->(ad_less (ad_double_plus_un a0) a'')=true. Intros. Rewrite (ad_less_z (ad_double_plus_un a0)) in H0. Discriminate H0. Intros. Rewrite (ad_less_def_4 a0 a1) in H1. Discriminate H1. Intros a1 H0 a'' H1. Apply ad_ind_double with P:=[a'':ad] (ad_less (ad_double_plus_un a1) a'')=true ->(ad_less (ad_double_plus_un a0) a'')=true. Intro. Rewrite (ad_less_z (ad_double_plus_un a1)) in H2. Discriminate H2. Intros. Rewrite (ad_less_def_4 a1 a2) in H3. Discriminate H3. Rewrite (ad_less_def_2 a0 a1) in H1. Intros. Rewrite (ad_less_def_2 a1 a2) in H3. Rewrite (ad_less_def_2 a0 a2). Exact (H a1 a2 H1 H3). Qed. Fixpoint alist_sorted [l:(alist A)] : bool := Cases l of nil => true | (cons (a, _) l') => Cases l' of nil => true | (cons (a', y') l'') => (andb (ad_less a a') (alist_sorted l')) end end. Fixpoint alist_nth_ad [n:nat; l:(alist A)] : ad := Cases l of nil => ad_z (* dummy *) | (cons (a, y) l') => Cases n of O => a | (S n') => (alist_nth_ad n' l') end end. Definition alist_sorted_1 := [l:(alist A)] (n:nat) (le (S (S n)) (length l)) -> (ad_less (alist_nth_ad n l) (alist_nth_ad (S n) l))=true. Lemma alist_sorted_imp_1 : (l:(alist A)) (alist_sorted l)=true -> (alist_sorted_1 l). Proof. Unfold alist_sorted_1. Induction l. Intros. Elim (le_Sn_O (S n) H0). Intro r. Elim r. Intros a y. Induction l0. Intros. Simpl in H1. Elim (le_Sn_O n (le_S_n (S n) O H1)). Intro r0. Elim r0. Intros a0 y0. Induction n. Intros. Simpl. Simpl in H1. Exact (proj1 ? ? (andb_prop ? ? H1)). Intros. Change (ad_less (alist_nth_ad n0 (cons (a0,y0) l1)) (alist_nth_ad (S n0) (cons (a0,y0) l1)))=true. Apply H0. Exact (proj2 ? ? (andb_prop ? ? H1)). Apply le_S_n. Exact H3. Qed. Definition alist_sorted_2 := [l:(alist A)] (m,n:nat) (lt m n) -> (le (S n) (length l)) -> (ad_less (alist_nth_ad m l) (alist_nth_ad n l))=true. Lemma alist_sorted_1_imp_2 : (l:(alist A)) (alist_sorted_1 l) -> (alist_sorted_2 l). Proof. Unfold alist_sorted_1 alist_sorted_2 lt. Intros l H m n H0. Elim H0. Exact (H m). Intros. Apply ad_less_trans with a':=(alist_nth_ad m0 l). Apply H2. Apply le_trans_S. Assumption. Apply H. Assumption. Qed. Lemma alist_sorted_2_imp : (l:(alist A)) (alist_sorted_2 l) -> (alist_sorted l)=true. Proof. Unfold alist_sorted_2 lt. Induction l. Trivial. Intro r. Elim r. Intros a y. Induction l0. Trivial. Intro r0. Elim r0. Intros a0 y0. Intros. Change (andb (ad_less a a0) (alist_sorted (cons (a0,y0) l1)))=true. Apply andb_true_intro. Split. Apply (H1 (0) (1)). Apply le_n. Simpl. Apply le_n_S. Apply le_n_S. Apply le_O_n. Apply H0. Intros. Apply (H1 (S m) (S n)). Apply le_n_S. Assumption. Exact (le_n_S ? ? H3). Qed. Lemma app_length : (C:Set) (l,l':(list C)) (length (app l l'))=(plus (length l) (length l')). Proof. Induction l. Trivial. Intros. Simpl. Rewrite (H l'). Reflexivity. Qed. Lemma aapp_length : (l,l':(alist A)) (length (aapp A l l'))=(plus (length l) (length l')). Proof. Exact (app_length ad*A). Qed. Lemma alist_nth_ad_aapp_1 : (l,l':(alist A)) (n:nat) (le (S n) (length l)) -> (alist_nth_ad n (aapp A l l'))=(alist_nth_ad n l). Proof. Induction l. Intros. Elim (le_Sn_O n H). Intro r. Elim r. Intros a y l' H l''. Induction n. Trivial. Intros. Simpl. Apply H. Apply le_S_n. Exact H1. Qed. Lemma alist_nth_ad_aapp_2 : (l,l':(alist A)) (n:nat) (le (S n) (length l')) -> (alist_nth_ad (plus (length l) n) (aapp A l l'))=(alist_nth_ad n l'). Proof. Induction l. Trivial. Intro r. Elim r. Intros a y l' H l'' n H0. Simpl. Apply H. Exact H0. Qed. Lemma interval_split : (p,q,n:nat) (le (S n) (plus p q)) -> {n' : nat | (le (S n') q) /\ n=(plus p n')}+{(le (S n) p)}. Proof. Induction p. Simpl. Intros. Left . Split with n. (Split; [ Assumption | Reflexivity ]). Intros p' H q. Induction n. Intros. Right . Apply le_n_S. Apply le_O_n. Intros. Elim (H ? ? (le_S_n ? ? H1)). Intro H2. Left . Elim H2. Intros n' H3. Elim H3. Intros H4 H5. Split with n'. (Split; [ Assumption | Rewrite H5; Reflexivity ]). Intro H2. Right . Apply le_n_S. Assumption. Qed. Lemma alist_conc_sorted : (l,l':(alist A)) (alist_sorted_2 l) -> (alist_sorted_2 l') -> ((n,n':nat) (le (S n) (length l)) -> (le (S n') (length l')) -> (ad_less (alist_nth_ad n l) (alist_nth_ad n' l'))=true) -> (alist_sorted_2 (aapp A l l')). Proof. Unfold alist_sorted_2 lt. Intros. Rewrite (aapp_length l l') in H3. Elim (interval_split (length l) (length l') m (le_trans ? ? ? (le_n_S ? ? (lt_le_weak m n H2)) H3)). Intro H4. Elim H4. Intros m' H5. Elim H5. Intros. Rewrite H7. Rewrite (alist_nth_ad_aapp_2 l l' m' H6). Elim (interval_split (length l) (length l') n H3). Intro H8. Elim H8. Intros n' H9. Elim H9. Intros. Rewrite H11. Rewrite (alist_nth_ad_aapp_2 l l' n' H10). Apply H0. Rewrite H7 in H2. Rewrite H11 in H2. Change (le (plus (S (length l)) m') (plus (length l) n')) in H2. Rewrite (plus_Snm_nSm (length l) m') in H2. Exact (simpl_le_plus_l (length l) (S m') n' H2). Exact H10. Intro H8. Rewrite H7 in H2. Cut (le (S (length l)) (length l)). Intros. Elim (le_Sn_n ? H9). Apply le_trans with m:=(S n). Apply le_n_S. Apply le_trans with m:=(S (plus (length l) m')). Apply le_trans with m:=(plus (length l) m'). Apply le_plus_l. Apply le_n_Sn. Exact H2. Exact H8. Intro H4. Rewrite (alist_nth_ad_aapp_1 l l' m H4). Elim (interval_split (length l) (length l') n H3). Intro H5. Elim H5. Intros n' H6. Elim H6. Intros. Rewrite H8. Rewrite (alist_nth_ad_aapp_2 l l' n' H7). Exact (H1 m n' H4 H7). Intro H5. Rewrite (alist_nth_ad_aapp_1 l l' n H5). Exact (H m n H2 H5). Qed. Lemma alist_nth_ad_semantics : (l:(alist A)) (n:nat) (le (S n) (length l)) -> {y:A | (alist_semantics A l (alist_nth_ad n l))=(SOME A y)}. Proof. Induction l. Intros. Elim (le_Sn_O ? H). Intro r. Elim r. Intros a y l0 H. Induction n. Simpl. Intro. Split with y. Rewrite (ad_eq_correct a). Reflexivity. Intros. Elim (H ? (le_S_n ? ? H1)). Intros y0 H2. Elim (sumbool_of_bool (ad_eq a (alist_nth_ad n0 l0))). Intro H3. Split with y. Rewrite (ad_eq_complete ? ? H3). Simpl. Rewrite (ad_eq_correct (alist_nth_ad n0 l0)). Reflexivity. Intro H3. Split with y0. Simpl. Rewrite H3. Assumption. Qed. Lemma alist_of_Map_nth_ad : (m:(Map A)) (pf:ad->ad) (l:(alist A)) l=(MapFold1 A (alist A) (anil A) (aapp A) [a0:ad][y:A](acons A (a0,y) (anil A)) pf m) -> (n:nat) (le (S n) (length l)) -> {a':ad | (alist_nth_ad n l)=(pf a')}. Proof. Intros. Elim (alist_nth_ad_semantics l n H0). Intros y H1. Apply (alist_of_Map_semantics_1_1 A m pf (alist_nth_ad n l) y). Rewrite <- H. Assumption. Qed. Definition ad_monotonic := [pf:ad->ad] (a,a':ad) (ad_less a a')=true -> (ad_less (pf a) (pf a'))=true. Lemma ad_double_monotonic : (ad_monotonic ad_double). Proof. Unfold ad_monotonic. Intros. Rewrite ad_less_def_1. Assumption. Qed. Lemma ad_double_plus_un_monotonic : (ad_monotonic ad_double_plus_un). Proof. Unfold ad_monotonic. Intros. Rewrite ad_less_def_2. Assumption. Qed. Lemma ad_comp_monotonic : (pf,pf':ad->ad) (ad_monotonic pf) -> (ad_monotonic pf') -> (ad_monotonic [a0:ad] (pf (pf' a0))). Proof. Unfold ad_monotonic. Intros. Apply H. Apply H0. Exact H1. Qed. Lemma ad_comp_double_monotonic : (pf:ad->ad) (ad_monotonic pf) -> (ad_monotonic [a0:ad] (pf (ad_double a0))). Proof. Intros. Apply ad_comp_monotonic. Assumption. Exact ad_double_monotonic. Qed. Lemma ad_comp_double_plus_un_monotonic : (pf:ad->ad) (ad_monotonic pf) -> (ad_monotonic [a0:ad] (pf (ad_double_plus_un a0))). Proof. Intros. Apply ad_comp_monotonic. Assumption. Exact ad_double_plus_un_monotonic. Qed. Lemma alist_of_Map_sorts_1 : (m:(Map A)) (pf:ad->ad) (ad_monotonic pf) -> (alist_sorted_2 (MapFold1 A (alist A) (anil A) (aapp A) [a:ad][y:A](acons A (a,y) (anil A)) pf m)). Proof. Induction m. Simpl. Intros. Apply alist_sorted_1_imp_2. Apply alist_sorted_imp_1. Reflexivity. Intros. Simpl. Apply alist_sorted_1_imp_2. Apply alist_sorted_imp_1. Reflexivity. Intros. Simpl. Apply alist_conc_sorted. Exact (H [a0:ad](pf (ad_double a0)) (ad_comp_double_monotonic pf H1)). Exact (H0 [a0:ad](pf (ad_double_plus_un a0)) (ad_comp_double_plus_un_monotonic pf H1)). Intros. Elim (alist_of_Map_nth_ad m0 [a0:ad](pf (ad_double a0)) (MapFold1 A (alist A) (anil A) (aapp A) [a0:ad][y:A](acons A (a0,y) (anil A)) [a0:ad](pf (ad_double a0)) m0) (refl_equal ? ?) n H2). Intros a H4. Rewrite H4. Elim (alist_of_Map_nth_ad m1 [a0:ad](pf (ad_double_plus_un a0)) (MapFold1 A (alist A) (anil A) (aapp A) [a0:ad][y:A](acons A (a0,y) (anil A)) [a0:ad](pf (ad_double_plus_un a0)) m1) (refl_equal ? ?) n' H3). Intros a' H5. Rewrite H5. Unfold ad_monotonic in H1. Apply H1. Apply ad_less_def_3. Qed. Lemma alist_of_Map_sorts : (m:(Map A)) (alist_sorted (alist_of_Map A m))=true. Proof. Intro. Apply alist_sorted_2_imp. Exact (alist_of_Map_sorts_1 m [a0:ad]a0 [a,a':ad][p:(ad_less a a')=true]p). Qed. Lemma alist_of_Map_sorts1 : (m:(Map A)) (alist_sorted_1 (alist_of_Map A m)). Proof. Intro. Apply alist_sorted_imp_1. Apply alist_of_Map_sorts. Qed. Lemma alist_of_Map_sorts2 : (m:(Map A)) (alist_sorted_2 (alist_of_Map A m)). Proof. Intro. Apply alist_sorted_1_imp_2. Apply alist_of_Map_sorts1. Qed. Lemma ad_less_total : (a,a':ad) {(ad_less a a')=true}+{(ad_less a' a)=true}+{a=a'}. Proof. Intro a. Refine (ad_rec_double a [a:ad] (a':ad){(ad_less a a')=true}+{(ad_less a' a)=true}+{a=a'} ? ? ?). Intro. Elim (sumbool_of_bool (ad_less ad_z a')). Intro H. Left . Left . Assumption. Intro H. Right . Rewrite (ad_z_less_2 a' H). Reflexivity. Intros a0 H a'. Refine (ad_rec_double a' [a':ad] {(ad_less (ad_double a0) a')=true} +{(ad_less a' (ad_double a0))=true}+{(ad_double a0)=a'} ? ? ?). Elim (sumbool_of_bool (ad_less ad_z (ad_double a0))). Intro H0. Left . Right . Assumption. Intro H0. Right . Exact (ad_z_less_2 ? H0). Intros a1 H0. Rewrite ad_less_def_1. Rewrite ad_less_def_1. Elim (H a1). Intro H1. Left . Assumption. Intro H1. Right . Rewrite H1. Reflexivity. Intros a1 H0. Left . Left . Apply ad_less_def_3. Intros a0 H a'. Refine (ad_rec_double a' [a':ad] {(ad_less (ad_double_plus_un a0) a')=true} +{(ad_less a' (ad_double_plus_un a0))=true} +{(ad_double_plus_un a0)=a'} ? ? ?). Left . Right . (Case a0; Reflexivity). Intros a1 H0. Left . Right . Apply ad_less_def_3. Intros a1 H0. Rewrite ad_less_def_2. Rewrite ad_less_def_2. Elim (H a1). Intro H1. Left . Assumption. Intro H1. Right . Rewrite H1. Reflexivity. Qed. Lemma alist_too_low : (l:(alist A)) (a,a':ad) (y:A) (ad_less a a')=true -> (alist_sorted_2 (cons (a',y) l)) -> (alist_semantics A (cons (a',y) l) a)=(NONE A). Proof. Induction l. Intros. Simpl. Elim (sumbool_of_bool (ad_eq a' a)). Intro H1. Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (ad_less_not_refl a) in H. Discriminate H. Intro H1. Rewrite H1. Reflexivity. Intro r. Elim r. Intros a y l0 H a0 a1 y0 H0 H1. Change (Case (ad_eq a1 a0) of (SOME A y0) (alist_semantics A (cons (a,y) l0) a0) end)=(NONE A). Elim (sumbool_of_bool (ad_eq a1 a0)). Intro H2. Rewrite (ad_eq_complete ? ? H2) in H0. Rewrite (ad_less_not_refl a0) in H0. Discriminate H0. Intro H2. Rewrite H2. Apply H. Apply ad_less_trans with a':=a1. Assumption. Unfold alist_sorted_2 in H1. Apply (H1 (0) (1)). Apply lt_n_Sn. Simpl. Apply le_n_S. Apply le_n_S. Apply le_O_n. Apply alist_sorted_1_imp_2. Apply alist_sorted_imp_1. Cut (alist_sorted (cons (a1,y0) (cons (a,y) l0)))=true. Intro H3. Exact (proj2 ? ? (andb_prop ? ? H3)). Apply alist_sorted_2_imp. Assumption. Qed. Lemma alist_semantics_nth_ad : (l:(alist A)) (a:ad) (y:A) (alist_semantics A l a)=(SOME A y) -> {n:nat | (le (S n) (length l)) /\ (alist_nth_ad n l)=a}. Proof. Induction l. Intros. Discriminate H. Intro r. Elim r. Intros a y l0 H a0 y0 H0. Simpl in H0. Elim (sumbool_of_bool (ad_eq a a0)). Intro H1. Rewrite H1 in H0. Split with O. Split. Simpl. Apply le_n_S. Apply le_O_n. Simpl. Exact (ad_eq_complete ? ? H1). Intro H1. Rewrite H1 in H0. Elim (H a0 y0 H0). Intros n' H2. Split with (S n'). Split. Simpl. Apply le_n_S. Exact (proj1 ? ? H2). Exact (proj2 ? ? H2). Qed. Lemma alist_semantics_tail : (l:(alist A)) (a:ad) (y:A) (alist_sorted_2 (cons (a,y) l)) -> (eqm A (alist_semantics A l) [a0:ad] if (ad_eq a a0) then (NONE A) else (alist_semantics A (cons (a,y) l) a0)). Proof. Unfold eqm. Intros. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Rewrite H0. Rewrite <- (ad_eq_complete ? ? H0). Unfold alist_sorted_2 in H. Elim (option_sum A (alist_semantics A l a)). Intro H1. Elim H1. Intros y0 H2. Elim (alist_semantics_nth_ad l a y0 H2). Intros n H3. Elim H3. Intros. Cut (ad_less (alist_nth_ad (0) (cons (a,y) l)) (alist_nth_ad (S n) (cons (a,y) l)))=true. Intro. Simpl in H6. Rewrite H5 in H6. Rewrite (ad_less_not_refl a) in H6. Discriminate H6. Apply H. Apply lt_O_Sn. Simpl. Apply le_n_S. Assumption. Trivial. Intro H0. Simpl. Rewrite H0. Reflexivity. Qed. Lemma alist_semantics_same_tail : (l,l':(alist A)) (a:ad) (y:A) (alist_sorted_2 (cons (a,y) l)) -> (alist_sorted_2 (cons (a,y) l')) -> (eqm A (alist_semantics A (cons (a,y) l)) (alist_semantics A (cons (a,y) l'))) -> (eqm A (alist_semantics A l) (alist_semantics A l')). Proof. Unfold eqm. Intros. Rewrite (alist_semantics_tail ? ? ? H a0). Rewrite (alist_semantics_tail ? ? ? H0 a0). Case (ad_eq a a0). Reflexivity. Exact (H1 a0). Qed. Lemma alist_sorted_tail : (l:(alist A)) (a:ad) (y:A) (alist_sorted_2 (cons (a,y) l)) -> (alist_sorted_2 l). Proof. Unfold alist_sorted_2. Intros. Apply (H (S m) (S n)). Apply lt_n_S. Assumption. Simpl. Apply le_n_S. Assumption. Qed. Lemma alist_canonical : (l,l':(alist A)) (eqm A (alist_semantics A l) (alist_semantics A l')) -> (alist_sorted_2 l) -> (alist_sorted_2 l') -> l=l'. Proof. Unfold eqm. Induction l. Induction l'. Trivial. Intro r. Elim r. Intros a y l0 H H0 H1 H2. Simpl in H0. Cut (NONE A)=(Case (ad_eq a a) of (SOME A y) (alist_semantics A l0 a) end). Rewrite (ad_eq_correct a). Intro. Discriminate H3. Exact (H0 a). Intro r. Elim r. Intros a y l0 H. Induction l'. Intros. Simpl in H0. Cut (Case (ad_eq a a) of (SOME A y) (alist_semantics A l0 a) end)=(NONE A). Rewrite (ad_eq_correct a). Intro. Discriminate H3. Exact (H0 a). Intro r'. Elim r'. Intros a' y' l'0 H0 H1 H2 H3. Elim (ad_less_total a a'). Intro H4. Elim H4. Intro H5. Cut (alist_semantics A (cons (a,y) l0) a)=(alist_semantics A (cons (a',y') l'0) a). Intro. Rewrite (alist_too_low l'0 a a' y' H5 H3) in H6. Simpl in H6. Rewrite (ad_eq_correct a) in H6. Discriminate H6. Exact (H1 a). Intro H5. Cut (alist_semantics A (cons (a,y) l0) a')=(alist_semantics A (cons (a',y') l'0) a'). Intro. Rewrite (alist_too_low l0 a' a y H5 H2) in H6. Simpl in H6. Rewrite (ad_eq_correct a') in H6. Discriminate H6. Exact (H1 a'). Intro H4. Rewrite H4. Cut (alist_semantics A (cons (a,y) l0) a)=(alist_semantics A (cons (a',y') l'0) a). Intro. Simpl in H5. Rewrite H4 in H5. Rewrite (ad_eq_correct a') in H5. Inversion H5. Rewrite H4 in H1. Rewrite H7 in H1. Cut l0=l'0. Intro. Rewrite H6. Reflexivity. Apply H. Rewrite H4 in H2. Rewrite H7 in H2. Exact (alist_semantics_same_tail l0 l'0 a' y' H2 H3 H1). Exact (alist_sorted_tail ? ? ? H2). Exact (alist_sorted_tail ? ? ? H3). Exact (H1 a). Qed. End LSort.