(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ad. Lemma ad_sum : (a:ad) {p:positive | a=(ad_x p)}+{a=ad_z}. Proof. NewDestruct a; Auto. Left; Exists p; Trivial. Qed. Fixpoint p_xor [p:positive] : positive -> ad := [p2] Cases p of xH => Cases p2 of xH => ad_z | (xO p'2) => (ad_x (xI p'2)) | (xI p'2) => (ad_x (xO p'2)) end | (xO p') => Cases p2 of xH => (ad_x (xI p')) | (xO p'2) => Cases (p_xor p' p'2) of ad_z => ad_z | (ad_x p'') => (ad_x (xO p'')) end | (xI p'2) => Cases (p_xor p' p'2) of ad_z => (ad_x xH) | (ad_x p'') => (ad_x (xI p'')) end end | (xI p') => Cases p2 of xH => (ad_x (xO p')) | (xO p'2) => Cases (p_xor p' p'2) of ad_z => (ad_x xH) | (ad_x p'') => (ad_x (xI p'')) end | (xI p'2) => Cases (p_xor p' p'2) of ad_z => ad_z | (ad_x p'') => (ad_x (xO p'')) end end end. Definition ad_xor := [a,a':ad] Cases a of ad_z => a' | (ad_x p) => Cases a' of ad_z => a | (ad_x p') => (p_xor p p') end end. Lemma ad_xor_neutral_left : (a:ad) (ad_xor ad_z a)=a. Proof. Trivial. Qed. Lemma ad_xor_neutral_right : (a:ad) (ad_xor a ad_z)=a. Proof. NewDestruct a; Trivial. Qed. Lemma ad_xor_comm : (a,a':ad) (ad_xor a a')=(ad_xor a' a). Proof. NewDestruct a; NewDestruct a'; Simpl; Auto. Generalize p0; Clear p0; NewInduction p as [p Hrecp|p Hrecp|]; Simpl; Auto. NewDestruct p0; Simpl; Trivial; Intros. Rewrite Hrecp; Trivial. Rewrite Hrecp; Trivial. NewDestruct p0; Simpl; Trivial; Intros. Rewrite Hrecp; Trivial. Rewrite Hrecp; Trivial. NewDestruct p0; Simpl; Auto. Qed. Lemma ad_xor_nilpotent : (a:ad) (ad_xor a a)=ad_z. Proof. NewDestruct a; Trivial. Simpl. NewInduction p as [p IHp|p IHp|]; Trivial. Simpl. Rewrite IHp; Reflexivity. Simpl. Rewrite IHp; Reflexivity. Qed. Fixpoint ad_bit_1 [p:positive] : nat -> bool := Cases p of xH => [n:nat] Cases n of O => true | (S _) => false end | (xO p) => [n:nat] Cases n of O => false | (S n') => (ad_bit_1 p n') end | (xI p) => [n:nat] Cases n of O => true | (S n') => (ad_bit_1 p n') end end. Definition ad_bit := [a:ad] Cases a of ad_z => [_:nat] false | (ad_x p) => (ad_bit_1 p) end. Definition eqf := [f,g:nat->bool] (n:nat) (f n)=(g n). Lemma ad_faithful_1 : (a:ad) (eqf (ad_bit ad_z) (ad_bit a)) -> ad_z=a. Proof. NewDestruct a. Trivial. NewInduction p as [p IHp|p IHp|];Intro H. Absurd ad_z=(ad_x p). Discriminate. Exact (IHp [n:nat](H (S n))). Absurd ad_z=(ad_x p). Discriminate. Exact (IHp [n:nat](H (S n))). Absurd false=true. Discriminate. Exact (H O). Qed. Lemma ad_faithful_2 : (a:ad) (eqf (ad_bit (ad_x xH)) (ad_bit a)) -> (ad_x xH)=a. Proof. NewDestruct a. Intros. Absurd true=false. Discriminate. Exact (H O). NewDestruct p. Intro H. Absurd ad_z=(ad_x p). Discriminate. Exact (ad_faithful_1 (ad_x p) [n:nat](H (S n))). Intros. Absurd true=false. Discriminate. Exact (H O). Trivial. Qed. Lemma ad_faithful_3 : (a:ad) (p:positive) ((p':positive) (eqf (ad_bit (ad_x p)) (ad_bit (ad_x p'))) -> p=p') -> (eqf (ad_bit (ad_x (xO p))) (ad_bit a)) -> (ad_x (xO p))=a. Proof. NewDestruct a. Intros. Cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xO p)))). Intro. Rewrite (ad_faithful_1 (ad_x (xO p)) H1). Reflexivity. Unfold eqf. Intro. Unfold eqf in H0. Rewrite H0. Reflexivity. Case p. Intros. Absurd false=true. Discriminate. Exact (H0 O). Intros. Rewrite (H p0 [n:nat](H0 (S n))). Reflexivity. Intros. Absurd false=true. Discriminate. Exact (H0 O). Qed. Lemma ad_faithful_4 : (a:ad) (p:positive) ((p':positive) (eqf (ad_bit (ad_x p)) (ad_bit (ad_x p'))) -> p=p') -> (eqf (ad_bit (ad_x (xI p))) (ad_bit a)) -> (ad_x (xI p))=a. Proof. NewDestruct a. Intros. Cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xI p)))). Intro. Rewrite (ad_faithful_1 (ad_x (xI p)) H1). Reflexivity. Unfold eqf. Intro. Unfold eqf in H0. Rewrite H0. Reflexivity. Case p. Intros. Rewrite (H p0 [n:nat](H0 (S n))). Reflexivity. Intros. Absurd true=false. Discriminate. Exact (H0 O). Intros. Absurd ad_z=(ad_x p0). Discriminate. Cut (eqf (ad_bit (ad_x xH)) (ad_bit (ad_x (xI p0)))). Intro. Exact (ad_faithful_1 (ad_x p0) [n:nat](H1 (S n))). Unfold eqf. Unfold eqf in H0. Intro. Rewrite H0. Reflexivity. Qed. Lemma ad_faithful : (a,a':ad) (eqf (ad_bit a) (ad_bit a')) -> a=a'. Proof. NewDestruct a. Exact ad_faithful_1. NewInduction p. Intros a' H. Apply ad_faithful_4. Intros. Cut (ad_x p)=(ad_x p'). Intro. Inversion H1. Reflexivity. Exact (IHp (ad_x p') H0). Assumption. Intros. Apply ad_faithful_3. Intros. Cut (ad_x p)=(ad_x p'). Intro. Inversion H1. Reflexivity. Exact (IHp (ad_x p') H0). Assumption. Exact ad_faithful_2. Qed. Definition adf_xor := [f,g:nat->bool; n:nat] (xorb (f n) (g n)). Lemma ad_xor_sem_1 : (a':ad) (ad_bit (ad_xor ad_z a') O)=(ad_bit a' O). Proof. Trivial. Qed. Lemma ad_xor_sem_2 : (a':ad) (ad_bit (ad_xor (ad_x xH) a') O)=(negb (ad_bit a' O)). Proof. Intro. Case a'. Trivial. Simpl. Intro. Case p; Trivial. Qed. Lemma ad_xor_sem_3 : (p:positive) (a':ad) (ad_bit (ad_xor (ad_x (xO p)) a') O)=(ad_bit a' O). Proof. Intros. Case a'. Trivial. Simpl. Intro. Case p0; Trivial. Intro. Case (p_xor p p1); Trivial. Intro. Case (p_xor p p1); Trivial. Qed. Lemma ad_xor_sem_4 : (p:positive) (a':ad) (ad_bit (ad_xor (ad_x (xI p)) a') O)=(negb (ad_bit a' O)). Proof. Intros. Case a'. Trivial. Simpl. Intro. Case p0; Trivial. Intro. Case (p_xor p p1); Trivial. Intro. Case (p_xor p p1); Trivial. Qed. Lemma ad_xor_sem_5 : (a,a':ad) (ad_bit (ad_xor a a') O)=(adf_xor (ad_bit a) (ad_bit a') O). Proof. NewDestruct a. Intro. Change (ad_bit a' O)=(xorb false (ad_bit a' O)). Rewrite false_xorb. Trivial. Case p. Exact ad_xor_sem_4. Intros. Change (ad_bit (ad_xor (ad_x (xO p0)) a') O)=(xorb false (ad_bit a' O)). Rewrite false_xorb. Apply ad_xor_sem_3. Exact ad_xor_sem_2. Qed. Lemma ad_xor_sem_6 : (n:nat) ((a,a':ad) (ad_bit (ad_xor a a') n)=(adf_xor (ad_bit a) (ad_bit a') n)) -> (a,a':ad) (ad_bit (ad_xor a a') (S n))=(adf_xor (ad_bit a) (ad_bit a') (S n)). Proof. Intros. Case a. Unfold adf_xor. Unfold 2 ad_bit. Rewrite false_xorb. Reflexivity. Case a'. Unfold adf_xor. Unfold 3 ad_bit. Intro. Rewrite xorb_false. Reflexivity. Intros. Case p0. Case p. Intros. Change (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xI p1))) (S n)) =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n). Rewrite <- H. Simpl. Case (p_xor p2 p1); Trivial. Intros. Change (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xO p1))) (S n)) =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n). Rewrite <- H. Simpl. Case (p_xor p2 p1); Trivial. Intro. Unfold adf_xor. Unfold 3 ad_bit. Unfold ad_bit_1. Rewrite xorb_false. Reflexivity. Case p. Intros. Change (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xI p1))) (S n)) =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n). Rewrite <- H. Simpl. Case (p_xor p2 p1); Trivial. Intros. Change (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xO p1))) (S n)) =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n). Rewrite <- H. Simpl. Case (p_xor p2 p1); Trivial. Intro. Unfold adf_xor. Unfold 3 ad_bit. Unfold ad_bit_1. Rewrite xorb_false. Reflexivity. Unfold adf_xor. Unfold 2 ad_bit. Unfold ad_bit_1. Rewrite false_xorb. Simpl. Case p; Trivial. Qed. Lemma ad_xor_semantics : (a,a':ad) (eqf (ad_bit (ad_xor a a')) (adf_xor (ad_bit a) (ad_bit a'))). Proof. Unfold eqf. Intros. Generalize a a'. Elim n. Exact ad_xor_sem_5. Exact ad_xor_sem_6. Qed. Lemma eqf_sym : (f,f':nat->bool) (eqf f f') -> (eqf f' f). Proof. Unfold eqf. Intros. Rewrite H. Reflexivity. Qed. Lemma eqf_refl : (f:nat->bool) (eqf f f). Proof. Unfold eqf. Trivial. Qed. Lemma eqf_trans : (f,f',f'':nat->bool) (eqf f f') -> (eqf f' f'') -> (eqf f f''). Proof. Unfold eqf. Intros. Rewrite H. Exact (H0 n). Qed. Lemma adf_xor_eq : (f,f':nat->bool) (eqf (adf_xor f f') [n:nat] false) -> (eqf f f'). Proof. Unfold eqf. Unfold adf_xor. Intros. Apply xorb_eq. Apply H. Qed. Lemma ad_xor_eq : (a,a':ad) (ad_xor a a')=ad_z -> a=a'. Proof. Intros. Apply ad_faithful. Apply adf_xor_eq. Apply eqf_trans with f':=(ad_bit (ad_xor a a')). Apply eqf_sym. Apply ad_xor_semantics. Rewrite H. Unfold eqf. Trivial. Qed. Lemma adf_xor_assoc : (f,f',f'':nat->bool) (eqf (adf_xor (adf_xor f f') f'') (adf_xor f (adf_xor f' f''))). Proof. Unfold eqf. Unfold adf_xor. Intros. Apply xorb_assoc. Qed. Lemma eqf_xor_1 : (f,f',f'',f''':nat->bool) (eqf f f') -> (eqf f'' f''') -> (eqf (adf_xor f f'') (adf_xor f' f''')). Proof. Unfold eqf. Intros. Unfold adf_xor. Rewrite H. Rewrite H0. Reflexivity. Qed. Lemma ad_xor_assoc : (a,a',a'':ad) (ad_xor (ad_xor a a') a'')=(ad_xor a (ad_xor a' a'')). Proof. Intros. Apply ad_faithful. Apply eqf_trans with f':=(adf_xor (adf_xor (ad_bit a) (ad_bit a')) (ad_bit a'')). Apply eqf_trans with f':=(adf_xor (ad_bit (ad_xor a a')) (ad_bit a'')). Apply ad_xor_semantics. Apply eqf_xor_1. Apply ad_xor_semantics. Apply eqf_refl. Apply eqf_trans with f':=(adf_xor (ad_bit a) (adf_xor (ad_bit a') (ad_bit a''))). Apply adf_xor_assoc. Apply eqf_trans with f':=(adf_xor (ad_bit a) (ad_bit (ad_xor a' a''))). Apply eqf_xor_1. Apply eqf_refl. Apply eqf_sym. Apply ad_xor_semantics. Apply eqf_sym. Apply ad_xor_semantics. Qed. Definition ad_double := [a:ad] Cases a of ad_z => ad_z | (ad_x p) => (ad_x (xO p)) end. Definition ad_double_plus_un := [a:ad] Cases a of ad_z => (ad_x xH) | (ad_x p) => (ad_x (xI p)) end. Definition ad_div_2 := [a:ad] Cases a of ad_z => ad_z | (ad_x xH) => ad_z | (ad_x (xO p)) => (ad_x p) | (ad_x (xI p)) => (ad_x p) end. Lemma ad_double_div_2 : (a:ad) (ad_div_2 (ad_double a))=a. Proof. NewDestruct a; Trivial. Qed. Lemma ad_double_plus_un_div_2 : (a:ad) (ad_div_2 (ad_double_plus_un a))=a. Proof. NewDestruct a; Trivial. Qed. Lemma ad_double_inj : (a0,a1:ad) (ad_double a0)=(ad_double a1) -> a0=a1. Proof. Intros. Rewrite <- (ad_double_div_2 a0). Rewrite H. Apply ad_double_div_2. Qed. Lemma ad_double_plus_un_inj : (a0,a1:ad) (ad_double_plus_un a0)=(ad_double_plus_un a1) -> a0=a1. Proof. Intros. Rewrite <- (ad_double_plus_un_div_2 a0). Rewrite H. Apply ad_double_plus_un_div_2. Qed. Definition ad_bit_0 := [a:ad] Cases a of ad_z => false | (ad_x (xO _)) => false | _ => true end. Lemma ad_double_bit_0 : (a:ad) (ad_bit_0 (ad_double a))=false. Proof. NewDestruct a; Trivial. Qed. Lemma ad_double_plus_un_bit_0 : (a:ad) (ad_bit_0 (ad_double_plus_un a))=true. Proof. NewDestruct a; Trivial. Qed. Lemma ad_div_2_double : (a:ad) (ad_bit_0 a)=false -> (ad_double (ad_div_2 a))=a. Proof. NewDestruct a. Trivial. NewDestruct p. Intro H. Discriminate H. Intros. Reflexivity. Intro H. Discriminate H. Qed. Lemma ad_div_2_double_plus_un : (a:ad) (ad_bit_0 a)=true -> (ad_double_plus_un (ad_div_2 a))=a. Proof. NewDestruct a. Intro. Discriminate H. NewDestruct p. Intros. Reflexivity. Intro H. Discriminate H. Intro. Reflexivity. Qed. Lemma ad_bit_0_correct : (a:ad) (ad_bit a O)=(ad_bit_0 a). Proof. NewDestruct a; Trivial. NewDestruct p; Trivial. Qed. Lemma ad_div_2_correct : (a:ad) (n:nat) (ad_bit (ad_div_2 a) n)=(ad_bit a (S n)). Proof. NewDestruct a; Trivial. NewDestruct p; Trivial. Qed. Lemma ad_xor_bit_0 : (a,a':ad) (ad_bit_0 (ad_xor a a'))=(xorb (ad_bit_0 a) (ad_bit_0 a')). Proof. Intros. Rewrite <- ad_bit_0_correct. Rewrite (ad_xor_semantics a a' O). Unfold adf_xor. Rewrite ad_bit_0_correct. Rewrite ad_bit_0_correct. Reflexivity. Qed. Lemma ad_xor_div_2 : (a,a':ad) (ad_div_2 (ad_xor a a'))=(ad_xor (ad_div_2 a) (ad_div_2 a')). Proof. Intros. Apply ad_faithful. Unfold eqf. Intro. Rewrite (ad_xor_semantics (ad_div_2 a) (ad_div_2 a') n). Rewrite ad_div_2_correct. Rewrite (ad_xor_semantics a a' (S n)). Unfold adf_xor. Rewrite ad_div_2_correct. Rewrite ad_div_2_correct. Reflexivity. Qed. Lemma ad_neg_bit_0 : (a,a':ad) (ad_bit_0 (ad_xor a a'))=true -> (ad_bit_0 a)=(negb (ad_bit_0 a')). Proof. Intros. Rewrite <- true_xorb. Rewrite <- H. Rewrite ad_xor_bit_0. Rewrite xorb_assoc. Rewrite xorb_nilpotent. Rewrite xorb_false. Reflexivity. Qed. Lemma ad_neg_bit_0_1 : (a,a':ad) (ad_xor a a')=(ad_x xH) -> (ad_bit_0 a)=(negb (ad_bit_0 a')). Proof. Intros. Apply ad_neg_bit_0. Rewrite H. Reflexivity. Qed. Lemma ad_neg_bit_0_2 : (a,a':ad) (p:positive) (ad_xor a a')=(ad_x (xI p)) -> (ad_bit_0 a)=(negb (ad_bit_0 a')). Proof. Intros. Apply ad_neg_bit_0. Rewrite H. Reflexivity. Qed. Lemma ad_same_bit_0 : (a,a':ad) (p:positive) (ad_xor a a')=(ad_x (xO p)) -> (ad_bit_0 a)=(ad_bit_0 a'). Proof. Intros. Rewrite <- (xorb_false (ad_bit_0 a)). Cut (ad_bit_0 (ad_x (xO p)))=false. Intro. Rewrite <- H0. Rewrite <- H. Rewrite ad_xor_bit_0. Rewrite <- xorb_assoc. Rewrite xorb_nilpotent. Rewrite false_xorb. Reflexivity. Reflexivity. Qed.