(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* true | (xO p'1) (xO p'2) => (ad_eq_1 p'1 p'2) | (xI p'1) (xI p'2) => (ad_eq_1 p'1 p'2) | _ _ => false end. Definition ad_eq := [a,a':ad] Cases a a' of ad_z ad_z => true | (ad_x p) (ad_x p') => (ad_eq_1 p p') | _ _ => false end. Lemma ad_eq_correct : (a:ad) (ad_eq a a)=true. Proof. NewDestruct a; Trivial. NewInduction p; Trivial. Qed. Lemma ad_eq_complete : (a,a':ad) (ad_eq a a')=true -> a=a'. Proof. NewDestruct a. NewDestruct a'; Trivial. NewDestruct p. Discriminate 1. Discriminate 1. Discriminate 1. NewDestruct a'. Intros. Discriminate H. Unfold ad_eq. Intros. Cut p=p0. Intros. Rewrite H0. Reflexivity. Generalize Dependent p0. NewInduction p as [p IHp|p IHp|]. NewDestruct p0; Intro H. Rewrite (IHp p0). Reflexivity. Exact H. Discriminate H. Discriminate H. NewDestruct p0; Intro H. Discriminate H. Rewrite (IHp p0 H). Reflexivity. Discriminate H. NewDestruct p0; Intro H. Discriminate H. Discriminate H. Trivial. Qed. Lemma ad_eq_comm : (a,a':ad) (ad_eq a a')=(ad_eq a' a). Proof. Intros. Cut (b,b':bool)(ad_eq a a')=b->(ad_eq a' a)=b'->b=b'. Intros. Apply H. Reflexivity. Reflexivity. NewDestruct b. Intros. Cut a=a'. Intro. Rewrite H1 in H0. Rewrite (ad_eq_correct a') in H0. Exact H0. Apply ad_eq_complete. Exact H. NewDestruct b'. Intros. Cut a'=a. Intro. Rewrite H1 in H. Rewrite H1 in H0. Rewrite <- H. Exact H0. Apply ad_eq_complete. Exact H0. Trivial. Qed. Lemma ad_xor_eq_true : (a,a':ad) (ad_xor a a')=ad_z -> (ad_eq a a')=true. Proof. Intros. Rewrite (ad_xor_eq a a' H). Apply ad_eq_correct. Qed. Lemma ad_xor_eq_false : (a,a':ad) (p:positive) (ad_xor a a')=(ad_x p) -> (ad_eq a a')=false. Proof. Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H0. Rewrite (ad_eq_complete a a' H0) in H. Rewrite (ad_xor_nilpotent a') in H. Discriminate H. Trivial. Qed. Lemma ad_bit_0_1_not_double : (a:ad) (ad_bit_0 a)=true -> (a0:ad) (ad_eq (ad_double a0) a)=false. Proof. Intros. Elim (sumbool_of_bool (ad_eq (ad_double a0) a)). Intro H0. Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_bit_0 a0) in H. Discriminate H. Trivial. Qed. Lemma ad_not_div_2_not_double : (a,a0:ad) (ad_eq (ad_div_2 a) a0)=false -> (ad_eq a (ad_double a0))=false. Proof. Intros. Elim (sumbool_of_bool (ad_eq (ad_double a0) a)). Intro H0. Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_div_2 a0) in H. Rewrite (ad_eq_correct a0) in H. Discriminate H. Intro. Rewrite ad_eq_comm. Assumption. Qed. Lemma ad_bit_0_0_not_double_plus_un : (a:ad) (ad_bit_0 a)=false -> (a0:ad) (ad_eq (ad_double_plus_un a0) a)=false. Proof. Intros. Elim (sumbool_of_bool (ad_eq (ad_double_plus_un a0) a)). Intro H0. Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_plus_un_bit_0 a0) in H. Discriminate H. Trivial. Qed. Lemma ad_not_div_2_not_double_plus_un : (a,a0:ad) (ad_eq (ad_div_2 a) a0)=false -> (ad_eq (ad_double_plus_un a0) a)=false. Proof. Intros. Elim (sumbool_of_bool (ad_eq a (ad_double_plus_un a0))). Intro H0. Rewrite (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_plus_un_div_2 a0) in H. Rewrite (ad_eq_correct a0) in H. Discriminate H. Intro H0. Rewrite ad_eq_comm. Assumption. Qed. Lemma ad_bit_0_neq : (a,a':ad) (ad_bit_0 a)=false -> (ad_bit_0 a')=true -> (ad_eq a a')=false. Proof. Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H1. Rewrite (ad_eq_complete ? ? H1) in H. Rewrite H in H0. Discriminate H0. Trivial. Qed. Lemma ad_div_eq : (a,a':ad) (ad_eq a a')=true -> (ad_eq (ad_div_2 a) (ad_div_2 a'))=true. Proof. Intros. Cut a=a'. Intros. Rewrite H0. Apply ad_eq_correct. Apply ad_eq_complete. Exact H. Qed. Lemma ad_div_neq : (a,a':ad) (ad_eq (ad_div_2 a) (ad_div_2 a'))=false -> (ad_eq a a')=false. Proof. Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H0. Rewrite (ad_eq_complete ? ? H0) in H. Rewrite (ad_eq_correct (ad_div_2 a')) in H. Discriminate H. Trivial. Qed. Lemma ad_div_bit_eq : (a,a':ad) (ad_bit_0 a)=(ad_bit_0 a') -> (ad_div_2 a)=(ad_div_2 a') -> a=a'. Proof. Intros. Apply ad_faithful. Unfold eqf. NewDestruct n. Rewrite ad_bit_0_correct. Rewrite ad_bit_0_correct. Assumption. Rewrite <- ad_div_2_correct. Rewrite <- ad_div_2_correct. Rewrite H0. Reflexivity. Qed. Lemma ad_div_bit_neq : (a,a':ad) (ad_eq a a')=false -> (ad_bit_0 a)=(ad_bit_0 a') -> (ad_eq (ad_div_2 a) (ad_div_2 a'))=false. Proof. Intros. Elim (sumbool_of_bool (ad_eq (ad_div_2 a) (ad_div_2 a'))). Intro H1. Rewrite (ad_div_bit_eq ? ? H0 (ad_eq_complete ? ? H1)) in H. Rewrite (ad_eq_correct a') in H. Discriminate H. Trivial. Qed. Lemma ad_neq : (a,a':ad) (ad_eq a a')=false -> (ad_bit_0 a)=(negb (ad_bit_0 a')) \/ (ad_eq (ad_div_2 a) (ad_div_2 a'))=false. Proof. Intros. Cut (ad_bit_0 a)=(ad_bit_0 a')\/(ad_bit_0 a)=(negb (ad_bit_0 a')). Intros. Elim H0. Intro. Right . Apply ad_div_bit_neq. Assumption. Assumption. Intro. Left . Assumption. Case (ad_bit_0 a); Case (ad_bit_0 a'); Auto. Qed. Lemma ad_double_or_double_plus_un : (a:ad) {a0:ad | a=(ad_double a0)}+{a1:ad | a=(ad_double_plus_un a1)}. Proof. Intro. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H. Right . Split with (ad_div_2 a). Rewrite (ad_div_2_double_plus_un a H). Reflexivity. Intro H. Left . Split with (ad_div_2 a). Rewrite (ad_div_2_double a H). Reflexivity. Qed.