(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Prop](x:A)(P x). *) Notation allT := all (only parsing). Notation inst := Logic.inst (only parsing). Notation gen := Logic.gen (only parsing). (* Order is important to give printing priority to fully typed ALL and EX *) Notation AllT := (all ?). Notation "'ALLT' x | p" := (all ? [x]p) (at level 10, p at level 8). Notation "'ALLT' x : t | p" := (all ? [x:t]p) (at level 10, p at level 8). (* Section universal_quantification. Variable A : Type. Variable P : A->Prop. Theorem inst : (x:A)(allT ? [x](P x))->(P x). Proof. Unfold all; Auto. Qed. Theorem gen : (B:Prop)(f:(y:A)B->(P y))B->(allT A P). Proof. Red; Auto. Qed. End universal_quantification. *) (* (** * Existential Quantification *) (** [exT A P], or simply [(EXT x | P(x))], stands for the existential quantification on the predicate [P] when [A] is of type [Type] *) (** [exT2 A P Q], or simply [(EXT x | P(x) & Q(x))], stands for the existential quantification on both [P] and [Q] when [A] is of type [Type] *) Inductive exT [A:Type;P:A->Prop] : Prop := exT_intro : (x:A)(P x)->(exT A P). *) Notation exT := ex (only parsing). Notation exT_intro := ex_intro (only parsing). Notation exT_ind := ex_ind (only parsing). Notation ExT := (ex ?). Notation "'EXT' x | p" := (ex ? [x]p) (at level 10, p at level 8, only parsing). Notation "'EXT' x : t | p" := (ex ? [x:t]p) (at level 10, p at level 8, only parsing). (* Inductive exT2 [A:Type;P,Q:A->Prop] : Prop := exT_intro2 : (x:A)(P x)->(Q x)->(exT2 A P Q). *) Notation exT2 := ex2 (only parsing). Notation exT_intro2 := ex_intro2 (only parsing). Notation exT2_ind := ex2_ind (only parsing). Notation ExT2 := (ex2 ?). Notation "'EXT' x | p & q" := (ex2 ? [x]p [x]q) (at level 10, p, q at level 8). Notation "'EXT' x : t | p & q" := (ex2 ? [x:t]p [x:t]q) (at level 10, p, q at level 8). (* (** Leibniz equality : [A:Type][x,y:A] (P:A->Prop)(P x)->(P y) [eqT A x y], or simply [x==y], is Leibniz' equality when [A] is of type [Type]. This equality satisfies reflexivity (by definition), symmetry, transitivity and stability by congruence *) Inductive eqT [A:Type;x:A] : A -> Prop := refl_eqT : (eqT A x x). Hints Resolve refl_eqT (* exT_intro2 exT_intro *) : core v62. *) Notation eqT := eq (only parsing). Notation refl_eqT := refl_equal (only parsing). Notation eqT_ind := eq_ind (only parsing). Notation eqT_rect := eq_rect (only parsing). Notation eqT_rec := eq_rec (only parsing). Notation "x == y" := (eq ? x y) (at level 5, no associativity, only parsing). (** Parsing only of things in [Logic_type.v] *) Notation "< A > x == y" := (eq A x y) (A annot, at level 1, x at level 0, only parsing). (* Section Equality_is_a_congruence. Variables A,B : Type. Variable f : A->B. Variable x,y,z : A. Lemma sym_eqT : (eqT ? x y) -> (eqT ? y x). Proof. NewDestruct 1; Trivial. Qed. Lemma trans_eqT : (eqT ? x y) -> (eqT ? y z) -> (eqT ? x z). Proof. NewDestruct 2; Trivial. Qed. Lemma congr_eqT : (eqT ? x y)->(eqT ? (f x) (f y)). Proof. NewDestruct 1; Trivial. Qed. Lemma sym_not_eqT : ~(eqT ? x y) -> ~(eqT ? y x). Proof. Red; Intros H H'; Apply H; NewDestruct H'; Trivial. Qed. End Equality_is_a_congruence. *) Notation sym_eqT := sym_eq (only parsing). Notation trans_eqT := trans_eq (only parsing). Notation congr_eqT := f_equal (only parsing). Notation sym_not_eqT := sym_not_eq (only parsing). (* Hints Immediate sym_eqT sym_not_eqT : core v62. *) (** This states the replacement of equals by equals *) (* Definition eqT_ind_r : (A:Type)(x:A)(P:A->Prop)(P x)->(y:A)(eqT ? y x)->(P y). Intros A x P H y H0; Case sym_eqT with 1:=H0; Trivial. Defined. Definition eqT_rec_r : (A:Type)(x:A)(P:A->Set)(P x)->(y:A)(eqT ? y x)->(P y). Intros A x P H y H0; Case sym_eqT with 1:=H0; Trivial. Defined. Definition eqT_rect_r : (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eqT ? y x)->(P y). Intros A x P H y H0; Case sym_eqT with 1:=H0; Trivial. Defined. *) Notation eqT_ind_r := eq_ind_r (only parsing). Notation eqT_rec_r := eq_rec_r (only parsing). Notation eqT_rect_r := eq_rect_r (only parsing). (** Some datatypes at the [Type] level *) (* Inductive EmptyT: Type :=. Inductive UnitT : Type := IT : UnitT. *) Notation EmptyT := False (only parsing). Notation UnitT := unit (only parsing). Notation IT := tt. ]. Definition notT := [A:Type] A->EmptyT. V7only [ (** Have you an idea of what means [identityT A a b]? No matter! *) (* Inductive identityT [A:Type; a:A] : A -> Type := refl_identityT : (identityT A a a). *) Notation identityT := identity (only parsing). Notation refl_identityT := refl_identity (only parsing). Notation "< A > x === y" := (!identityT A x y) (A annot, at level 1, x at level 0, only parsing) : type_scope. Notation "x === y" := (identityT ? x y) (at level 5, no associativity, only parsing) : type_scope. (* Hints Resolve refl_identityT : core v62. *) ]. Section identity_is_a_congruence. Variables A,B : Type. Variable f : A->B. Variable x,y,z : A. Lemma sym_id : (identityT ? x y) -> (identityT ? y x). Proof. NewDestruct 1; Trivial. Qed. Lemma trans_id : (identityT ? x y) -> (identityT ? y z) -> (identityT ? x z). Proof. NewDestruct 2; Trivial. Qed. Lemma congr_id : (identityT ? x y)->(identityT ? (f x) (f y)). Proof. NewDestruct 1; Trivial. Qed. Lemma sym_not_id : (notT (identityT ? x y)) -> (notT (identityT ? y x)). Proof. Red; Intros H H'; Apply H; NewDestruct H'; Trivial. Qed. End identity_is_a_congruence. Definition identity_ind_r : (A:Type) (a:A) (P:A->Prop) (P a)->(y:A)(identityT ? y a)->(P y). Intros A x P H y H0; Case sym_id with 1:= H0; Trivial. Defined. Definition identity_rec_r : (A:Type) (a:A) (P:A->Set) (P a)->(y:A)(identityT ? y a)->(P y). Intros A x P H y H0; Case sym_id with 1:= H0; Trivial. Defined. Definition identity_rect_r : (A:Type) (a:A) (P:A->Type) (P a)->(y:A)(identityT ? y a)->(P y). Intros A x P H y H0; Case sym_id with 1:= H0; Trivial. Defined. V7only [ Notation sym_idT := sym_id (only parsing). Notation trans_idT := trans_id (only parsing). Notation congr_idT := congr_id (only parsing). Notation sym_not_idT := sym_not_id (only parsing). Notation identityT_ind_r := identity_ind_r (only parsing). Notation identityT_rec_r := identity_rec_r (only parsing). Notation identityT_rect_r := identity_rect_r (only parsing). ]. Inductive prodT [A,B:Type] : Type := pairT : A -> B -> (prodT A B). Section prodT_proj. Variables A, B : Type. Definition fstT := [H:(prodT A B)]Cases H of (pairT x _) => x end. Definition sndT := [H:(prodT A B)]Cases H of (pairT _ y) => y end. End prodT_proj. Definition prodT_uncurry : (A,B,C:Type)((prodT A B)->C)->A->B->C := [A,B,C:Type; f:((prodT A B)->C); x:A; y:B] (f (pairT A B x y)). Definition prodT_curry : (A,B,C:Type)(A->B->C)->(prodT A B)->C := [A,B,C:Type; f:(A->B->C); p:(prodT A B)] Cases p of | (pairT x y) => (f x y) end. Hints Immediate sym_id sym_not_id : core v62. V7only [ Implicits fstT [1 2]. Implicits sndT [1 2]. Implicits pairT [1 2]. ].