(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* True | false => False end). Hints Unfold Is_true : bool. Lemma Is_true_eq_left : (x:bool)x=true -> (Is_true x). Proof. Intros; Rewrite H; Auto with bool. Qed. Lemma Is_true_eq_right : (x:bool)true=x -> (Is_true x). Proof. Intros; Rewrite <- H; Auto with bool. Qed. Hints Immediate Is_true_eq_right Is_true_eq_left : bool. (*******************) (** Discrimination *) (*******************) Lemma diff_true_false : ~true=false. Proof. Unfold not; Intro contr; Change (Is_true false). Elim contr; Simpl; Trivial with bool. Qed. Hints Resolve diff_true_false : bool v62. Lemma diff_false_true : ~false=true. Proof. Red; Intros H; Apply diff_true_false. Symmetry. Assumption. Qed. Hints Resolve diff_false_true : bool v62. Lemma eq_true_false_abs : (b:bool)(b=true)->(b=false)->False. Intros b H; Rewrite H; Auto with bool. Qed. Hints Resolve eq_true_false_abs : bool. Lemma not_true_is_false : (b:bool)~b=true->b=false. NewDestruct b. Intros. Red in H; Elim H. Reflexivity. Intros abs. Reflexivity. Qed. Lemma not_false_is_true : (b:bool)~b=false->b=true. NewDestruct b. Intros. Reflexivity. Intro H; Red in H; Elim H. Reflexivity. Qed. (**********************) (** Order on booleans *) (**********************) Definition leb := [b1,b2:bool] Cases b1 of | true => b2=true | false => True end. Hints Unfold leb : bool v62. (*************) (** Equality *) (*************) Definition eqb : bool->bool->bool := [b1,b2:bool] Cases b1 b2 of true true => true | true false => false | false true => false | false false => true end. Lemma eqb_refl : (x:bool)(Is_true (eqb x x)). NewDestruct x; Simpl; Auto with bool. Qed. Lemma eqb_eq : (x,y:bool)(Is_true (eqb x y))->x=y. NewDestruct x; NewDestruct y; Simpl; Tauto. Qed. Lemma Is_true_eq_true : (x:bool) (Is_true x) -> x=true. NewDestruct x; Simpl; Tauto. Qed. Lemma Is_true_eq_true2 : (x:bool) x=true -> (Is_true x). NewDestruct x; Simpl; Auto with bool. Qed. Lemma eqb_subst : (P:bool->Prop)(b1,b2:bool)(eqb b1 b2)=true->(P b1)->(P b2). Unfold eqb . Intros P b1. Intros b2. Case b1. Case b2. Trivial with bool. Intros H. Inversion_clear H. Case b2. Intros H. Inversion_clear H. Trivial with bool. Qed. Lemma eqb_reflx : (b:bool)(eqb b b)=true. Intro b. Case b. Trivial with bool. Trivial with bool. Qed. Lemma eqb_prop : (a,b:bool)(eqb a b)=true -> a=b. NewDestruct a; NewDestruct b; Simpl; Intro; Discriminate H Orelse Reflexivity. Qed. (************************) (** Logical combinators *) (************************) Definition ifb : bool -> bool -> bool -> bool := [b1,b2,b3:bool](Cases b1 of true => b2 | false => b3 end). Definition andb : bool -> bool -> bool := [b1,b2:bool](ifb b1 b2 false). Definition orb : bool -> bool -> bool := [b1,b2:bool](ifb b1 true b2). Definition implb : bool -> bool -> bool := [b1,b2:bool](ifb b1 b2 true). Definition xorb : bool -> bool -> bool := [b1,b2:bool] Cases b1 b2 of true true => false | true false => true | false true => true | false false => false end. Definition negb := [b:bool]Cases b of true => false | false => true end. Infix "||" orb (at level 4, left associativity) : bool_scope. Infix "&&" andb (at level 3, no associativity) : bool_scope V8only (at level 40, left associativity). Open Scope bool_scope. Delimits Scope bool_scope with bool. Bind Scope bool_scope with bool. (**************************) (** Lemmas about [negb] *) (**************************) Lemma negb_intro : (b:bool)b=(negb (negb b)). Proof. NewDestruct b; Reflexivity. Qed. Lemma negb_elim : (b:bool)(negb (negb b))=b. Proof. NewDestruct b; Reflexivity. Qed. Lemma negb_orb : (b1,b2:bool) (negb (orb b1 b2)) = (andb (negb b1) (negb b2)). Proof. NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. Qed. Lemma negb_andb : (b1,b2:bool) (negb (andb b1 b2)) = (orb (negb b1) (negb b2)). Proof. NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. Qed. Lemma negb_sym : (b,b':bool)(b'=(negb b))->(b=(negb b')). Proof. NewDestruct b; NewDestruct b'; Intros; Simpl; Trivial with bool. Qed. Lemma no_fixpoint_negb : (b:bool)~(negb b)=b. Proof. NewDestruct b; Simpl; Intro; Apply diff_true_false; Auto with bool. Qed. Lemma eqb_negb1 : (b:bool)(eqb (negb b) b)=false. NewDestruct b. Trivial with bool. Trivial with bool. Qed. Lemma eqb_negb2 : (b:bool)(eqb b (negb b))=false. NewDestruct b. Trivial with bool. Trivial with bool. Qed. Lemma if_negb : (A:Set) (b:bool) (x,y:A) (if (negb b) then x else y)=(if b then y else x). Proof. NewDestruct b;Trivial. Qed. (****************************) (** A few lemmas about [or] *) (****************************) Lemma orb_prop : (a,b:bool)(orb a b)=true -> (a = true)\/(b = true). NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool. Qed. Lemma orb_prop2 : (a,b:bool)(Is_true (orb a b)) -> (Is_true a)\/(Is_true b). NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool. Qed. Lemma orb_true_intro : (b1,b2:bool)(b1=true)\/(b2=true)->(orb b1 b2)=true. NewDestruct b1; Auto with bool. NewDestruct 1; Intros. Elim diff_true_false; Auto with bool. Rewrite H; Trivial with bool. Qed. Hints Resolve orb_true_intro : bool v62. Lemma orb_b_true : (b:bool)(orb b true)=true. Auto with bool. Qed. Hints Resolve orb_b_true : bool v62. Lemma orb_true_b : (b:bool)(orb true b)=true. Trivial with bool. Qed. Definition orb_true_elim : (b1,b2:bool)(orb b1 b2)=true -> {b1=true}+{b2=true}. NewDestruct b1; Simpl; Auto with bool. Defined. Lemma orb_false_intro : (b1,b2:bool)(b1=false)->(b2=false)->(orb b1 b2)=false. Intros b1 b2 H1 H2; Rewrite H1; Rewrite H2; Trivial with bool. Qed. Hints Resolve orb_false_intro : bool v62. Lemma orb_b_false : (b:bool)(orb b false)=b. Proof. NewDestruct b; Trivial with bool. Qed. Hints Resolve orb_b_false : bool v62. Lemma orb_false_b : (b:bool)(orb false b)=b. Proof. NewDestruct b; Trivial with bool. Qed. Hints Resolve orb_false_b : bool v62. Lemma orb_false_elim : (b1,b2:bool)(orb b1 b2)=false -> (b1=false)/\(b2=false). Proof. NewDestruct b1. Intros; Elim diff_true_false; Auto with bool. NewDestruct b2. Intros; Elim diff_true_false; Auto with bool. Auto with bool. Qed. Lemma orb_neg_b : (b:bool)(orb b (negb b))=true. Proof. NewDestruct b; Reflexivity. Qed. Hints Resolve orb_neg_b : bool v62. Lemma orb_sym : (b1,b2:bool)(orb b1 b2)=(orb b2 b1). NewDestruct b1; NewDestruct b2; Reflexivity. Qed. Lemma orb_assoc : (b1,b2,b3:bool)(orb b1 (orb b2 b3))=(orb (orb b1 b2) b3). Proof. NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. Qed. Hints Resolve orb_sym orb_assoc orb_b_false orb_false_b : bool v62. (*****************************) (** A few lemmas about [and] *) (*****************************) Lemma andb_prop : (a,b:bool)(andb a b) = true -> (a = true)/\(b = true). Proof. NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool. Qed. Hints Resolve andb_prop : bool v62. Definition andb_true_eq : (a,b:bool) true = (andb a b) -> true = a /\ true = b. Proof. NewDestruct a; NewDestruct b; Auto. Defined. Lemma andb_prop2 : (a,b:bool)(Is_true (andb a b)) -> (Is_true a)/\(Is_true b). Proof. NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool. Qed. Hints Resolve andb_prop2 : bool v62. Lemma andb_true_intro : (b1,b2:bool)(b1=true)/\(b2=true)->(andb b1 b2)=true. Proof. NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool. Qed. Hints Resolve andb_true_intro : bool v62. Lemma andb_true_intro2 : (b1,b2:bool)(Is_true b1)->(Is_true b2)->(Is_true (andb b1 b2)). Proof. NewDestruct b1; NewDestruct b2; Simpl; Tauto. Qed. Hints Resolve andb_true_intro2 : bool v62. Lemma andb_false_intro1 : (b1,b2:bool)(b1=false)->(andb b1 b2)=false. NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool. Qed. Lemma andb_false_intro2 : (b1,b2:bool)(b2=false)->(andb b1 b2)=false. NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool. Qed. Lemma andb_b_false : (b:bool)(andb b false)=false. NewDestruct b; Auto with bool. Qed. Lemma andb_false_b : (b:bool)(andb false b)=false. Trivial with bool. Qed. Lemma andb_b_true : (b:bool)(andb b true)=b. NewDestruct b; Auto with bool. Qed. Lemma andb_true_b : (b:bool)(andb true b)=b. Trivial with bool. Qed. Definition andb_false_elim : (b1,b2:bool)(andb b1 b2)=false -> {b1=false}+{b2=false}. NewDestruct b1; Simpl; Auto with bool. Defined. Hints Resolve andb_false_elim : bool v62. Lemma andb_neg_b : (b:bool)(andb b (negb b))=false. NewDestruct b; Reflexivity. Qed. Hints Resolve andb_neg_b : bool v62. Lemma andb_sym : (b1,b2:bool)(andb b1 b2)=(andb b2 b1). NewDestruct b1; NewDestruct b2; Reflexivity. Qed. Lemma andb_assoc : (b1,b2,b3:bool)(andb b1 (andb b2 b3))=(andb (andb b1 b2) b3). NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. Qed. Hints Resolve andb_sym andb_assoc : bool v62. (*******************************) (** Properties of [xorb] *) (*******************************) Lemma xorb_false : (b:bool) (xorb b false)=b. Proof. NewDestruct b; Trivial. Qed. Lemma false_xorb : (b:bool) (xorb false b)=b. Proof. NewDestruct b; Trivial. Qed. Lemma xorb_true : (b:bool) (xorb b true)=(negb b). Proof. Trivial. Qed. Lemma true_xorb : (b:bool) (xorb true b)=(negb b). Proof. NewDestruct b; Trivial. Qed. Lemma xorb_nilpotent : (b:bool) (xorb b b)=false. Proof. NewDestruct b; Trivial. Qed. Lemma xorb_comm : (b,b':bool) (xorb b b')=(xorb b' b). Proof. NewDestruct b; NewDestruct b'; Trivial. Qed. Lemma xorb_assoc : (b,b',b'':bool) (xorb (xorb b b') b'')=(xorb b (xorb b' b'')). Proof. NewDestruct b; NewDestruct b'; NewDestruct b''; Trivial. Qed. Lemma xorb_eq : (b,b':bool) (xorb b b')=false -> b=b'. Proof. NewDestruct b; NewDestruct b'; Trivial. Unfold xorb. Intros. Rewrite H. Reflexivity. Qed. Lemma xorb_move_l_r_1 : (b,b',b'':bool) (xorb b b')=b'' -> b'=(xorb b b''). Proof. Intros. Rewrite <- (false_xorb b'). Rewrite <- (xorb_nilpotent b). Rewrite xorb_assoc. Rewrite H. Reflexivity. Qed. Lemma xorb_move_l_r_2 : (b,b',b'':bool) (xorb b b')=b'' -> b=(xorb b'' b'). Proof. Intros. Rewrite xorb_comm in H. Rewrite (xorb_move_l_r_1 b' b b'' H). Apply xorb_comm. Qed. Lemma xorb_move_r_l_1 : (b,b',b'':bool) b=(xorb b' b'') -> (xorb b' b)=b''. Proof. Intros. Rewrite H. Rewrite <- xorb_assoc. Rewrite xorb_nilpotent. Apply false_xorb. Qed. Lemma xorb_move_r_l_2 : (b,b',b'':bool) b=(xorb b' b'') -> (xorb b b'')=b'. Proof. Intros. Rewrite H. Rewrite xorb_assoc. Rewrite xorb_nilpotent. Apply xorb_false. Qed. (*******************************) (** De Morgan's law *) (*******************************) Lemma demorgan1 : (b1,b2,b3:bool) (andb b1 (orb b2 b3)) = (orb (andb b1 b2) (andb b1 b3)). NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. Qed. Lemma demorgan2 : (b1,b2,b3:bool) (andb (orb b1 b2) b3) = (orb (andb b1 b3) (andb b2 b3)). NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. Qed. Lemma demorgan3 : (b1,b2,b3:bool) (orb b1 (andb b2 b3)) = (andb (orb b1 b2) (orb b1 b3)). NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. Qed. Lemma demorgan4 : (b1,b2,b3:bool) (orb (andb b1 b2) b3) = (andb (orb b1 b3) (orb b2 b3)). NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. Qed. Lemma absoption_andb : (b1,b2:bool) (andb b1 (orb b1 b2)) = b1. Proof. NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. Qed. Lemma absoption_orb : (b1,b2:bool) (orb b1 (andb b1 b2)) = b1. Proof. NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. Qed. (** Misc. equalities between booleans (to be used by Auto) *) Lemma bool_1 : (b1,b2:bool)(b1=true <-> b2=true) -> b1=b2. Proof. Intros b1 b2; Case b1; Case b2; Intuition. Qed. Lemma bool_2 : (b1,b2:bool)b1=b2 -> b1=true -> b2=true. Proof. Intros b1 b2; Case b1; Case b2; Intuition. Qed. Lemma bool_3 : (b:bool) ~(negb b)=true -> b=true. Proof. NewDestruct b; Intuition. Qed. Lemma bool_4 : (b:bool) b=true -> ~(negb b)=true. Proof. NewDestruct b; Intuition. Qed. Lemma bool_5 : (b:bool) (negb b)=true -> ~b=true. Proof. NewDestruct b; Intuition. Qed. Lemma bool_6 : (b:bool) ~b=true -> (negb b)=true. Proof. NewDestruct b; Intuition. Qed. Hints Resolve bool_1 bool_2 bool_3 bool_4 bool_5 bool_6.