(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (le (S n) p). Proof. Auto with arith. Qed. Hints Immediate lt_le_S : arith v62. Theorem lt_n_Sm_le : (n,m:nat)(lt n (S m))->(le n m). Proof. Auto with arith. Qed. Hints Immediate lt_n_Sm_le : arith v62. Theorem le_lt_n_Sm : (n,m:nat)(le n m)->(lt n (S m)). Proof. Auto with arith. Qed. Hints Immediate le_lt_n_Sm : arith v62. Theorem le_not_lt : (n,m:nat)(le n m) -> ~(lt m n). Proof. NewInduction 1; Auto with arith. Qed. Theorem lt_not_le : (n,m:nat)(lt n m) -> ~(le m n). Proof. Red; Intros n m Lt Le; Exact (le_not_lt m n Le Lt). Qed. Hints Immediate le_not_lt lt_not_le : arith v62. (** Asymmetry *) Theorem lt_not_sym : (n,m:nat)(lt n m) -> ~(lt m n). Proof. NewInduction 1; Auto with arith. Qed. (** Order and successor *) Theorem lt_n_Sn : (n:nat)(lt n (S n)). Proof. Auto with arith. Qed. Hints Resolve lt_n_Sn : arith v62. Theorem lt_S : (n,m:nat)(lt n m)->(lt n (S m)). Proof. Auto with arith. Qed. Hints Resolve lt_S : arith v62. Theorem lt_n_S : (n,m:nat)(lt n m)->(lt (S n) (S m)). Proof. Auto with arith. Qed. Hints Resolve lt_n_S : arith v62. Theorem lt_S_n : (n,m:nat)(lt (S n) (S m))->(lt n m). Proof. Auto with arith. Qed. Hints Immediate lt_S_n : arith v62. Theorem lt_O_Sn : (n:nat)(lt O (S n)). Proof. Auto with arith. Qed. Hints Resolve lt_O_Sn : arith v62. Theorem lt_n_O : (n:nat)~(lt n O). Proof le_Sn_O. Hints Resolve lt_n_O : arith v62. (** Predecessor *) Lemma S_pred : (n,m:nat)(lt m n)->n=(S (pred n)). Proof. NewInduction 1; Auto with arith. Qed. Lemma lt_pred : (n,p:nat)(lt (S n) p)->(lt n (pred p)). Proof. NewInduction 1; Simpl; Auto with arith. Qed. Hints Immediate lt_pred : arith v62. Lemma lt_pred_n_n : (n:nat)(lt O n)->(lt (pred n) n). NewDestruct 1; Simpl; Auto with arith. Qed. Hints Resolve lt_pred_n_n : arith v62. (** Transitivity properties *) Theorem lt_trans : (n,m,p:nat)(lt n m)->(lt m p)->(lt n p). Proof. NewInduction 2; Auto with arith. Qed. Theorem lt_le_trans : (n,m,p:nat)(lt n m)->(le m p)->(lt n p). Proof. NewInduction 2; Auto with arith. Qed. Theorem le_lt_trans : (n,m,p:nat)(le n m)->(lt m p)->(lt n p). Proof. NewInduction 2; Auto with arith. Qed. Hints Resolve lt_trans lt_le_trans le_lt_trans : arith v62. (** Large = strict or equal *) Theorem le_lt_or_eq : (n,m:nat)(le n m)->((lt n m) \/ n=m). Proof. NewInduction 1; Auto with arith. Qed. Theorem lt_le_weak : (n,m:nat)(lt n m)->(le n m). Proof. Auto with arith. Qed. Hints Immediate lt_le_weak : arith v62. (** Dichotomy *) Theorem le_or_lt : (n,m:nat)((le n m)\/(lt m n)). Proof. Intros n m; Pattern n m; Apply nat_double_ind; Auto with arith. NewInduction 1; Auto with arith. Qed. Theorem nat_total_order: (m,n: nat) ~ m = n -> (lt m n) \/ (lt n m). Proof. Intros m n diff. Elim (le_or_lt n m); [Intro H'0 | Auto with arith]. Elim (le_lt_or_eq n m); Auto with arith. Intro H'; Elim diff; Auto with arith. Qed. (** Comparison to 0 *) Theorem neq_O_lt : (n:nat)(~O=n)->(lt O n). Proof. NewInduction n; Auto with arith. Intros; Absurd O=O; Trivial with arith. Qed. Hints Immediate neq_O_lt : arith v62. Theorem lt_O_neq : (n:nat)(lt O n)->(~O=n). Proof. NewInduction 1; Auto with arith. Qed. Hints Immediate lt_O_neq : arith v62.