(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (gt (S n) (S m)). Proof. Auto with arith. Qed. Hints Resolve gt_n_S : arith v62. Lemma gt_S_n : (n,p:nat)(gt (S p) (S n))->(gt p n). Proof. Auto with arith. Qed. Hints Immediate gt_S_n : arith v62. Theorem gt_S : (n,m:nat)(gt (S n) m)->((gt n m)\/(m=n)). Proof. Intros n m H; Unfold gt; Apply le_lt_or_eq; Auto with arith. Qed. Lemma gt_pred : (n,p:nat)(gt p (S n))->(gt (pred p) n). Proof. Auto with arith. Qed. Hints Immediate gt_pred : arith v62. (** Irreflexivity *) Lemma gt_antirefl : (n:nat)~(gt n n). Proof lt_n_n. Hints Resolve gt_antirefl : arith v62. (** Asymmetry *) Lemma gt_not_sym : (n,m:nat)(gt n m) -> ~(gt m n). Proof [n,m:nat](lt_not_sym m n). Hints Resolve gt_not_sym : arith v62. (** Relating strict and large orders *) Lemma le_not_gt : (n,m:nat)(le n m) -> ~(gt n m). Proof le_not_lt. Hints Resolve le_not_gt : arith v62. Lemma gt_not_le : (n,m:nat)(gt n m) -> ~(le n m). Proof. Auto with arith. Qed. Hints Resolve gt_not_le : arith v62. Theorem le_S_gt : (n,m:nat)(le (S n) m)->(gt m n). Proof. Auto with arith. Qed. Hints Immediate le_S_gt : arith v62. Lemma gt_S_le : (n,p:nat)(gt (S p) n)->(le n p). Proof. Intros n p; Exact (lt_n_Sm_le n p). Qed. Hints Immediate gt_S_le : arith v62. Lemma gt_le_S : (n,p:nat)(gt p n)->(le (S n) p). Proof. Auto with arith. Qed. Hints Resolve gt_le_S : arith v62. Lemma le_gt_S : (n,p:nat)(le n p)->(gt (S p) n). Proof. Auto with arith. Qed. Hints Resolve le_gt_S : arith v62. (** Transitivity *) Theorem le_gt_trans : (n,m,p:nat)(le m n)->(gt m p)->(gt n p). Proof. Red; Intros; Apply lt_le_trans with m; Auto with arith. Qed. Theorem gt_le_trans : (n,m,p:nat)(gt n m)->(le p m)->(gt n p). Proof. Red; Intros; Apply le_lt_trans with m; Auto with arith. Qed. Lemma gt_trans : (n,m,p:nat)(gt n m)->(gt m p)->(gt n p). Proof. Red; Intros n m p H1 H2. Apply lt_trans with m; Auto with arith. Qed. Theorem gt_trans_S : (n,m,p:nat)(gt (S n) m)->(gt m p)->(gt n p). Proof. Red; Intros; Apply lt_le_trans with m; Auto with arith. Qed. Hints Resolve gt_trans_S le_gt_trans gt_le_trans : arith v62. (** Comparison to 0 *) Theorem gt_O_eq : (n:nat)((gt n O)\/(O=n)). Proof. Intro n ; Apply gt_S ; Auto with arith. Qed. (** Simplification and compatibility *) Lemma simpl_gt_plus_l : (n,m,p:nat)(gt (plus p n) (plus p m))->(gt n m). Proof. Red; Intros n m p H; Apply simpl_lt_plus_l with p; Auto with arith. Qed. Lemma gt_reg_l : (n,m,p:nat)(gt n m)->(gt (plus p n) (plus p m)). Proof. Auto with arith. Qed. Hints Resolve gt_reg_l : arith v62.