(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ~(q=p). Proof sym_not_eq. Hints Immediate not_eq_sym : arith. *) Notation not_eq_sym := sym_not_eq. Implicit Variables Type m,n,p,q:nat. Require Arith. Require Peano_dec. Require Compare_dec. Definition le_or_le_S := le_le_S_dec. Definition compare := gt_eq_gt_dec. Lemma le_dec : (n,m:nat) {le n m} + {le m n}. Proof le_ge_dec. Definition lt_or_eq := [n,m:nat]{(gt m n)}+{n=m}. Lemma le_decide : (n,m:nat)(le n m)->(lt_or_eq n m). Proof le_lt_eq_dec. Lemma le_le_S_eq : (p,q:nat)(le p q)->((le (S p) q)\/(p=q)). Proof le_lt_or_eq. (* By special request of G. Kahn - Used in Group Theory *) Lemma discrete_nat : (m, n: nat) (lt m n) -> (S m) = n \/ (EX r: nat | n = (S (S (plus m r)))). Proof. Intros m n H. LApply (lt_le_S m n); Auto with arith. Intro H'; LApply (le_lt_or_eq (S m) n); Auto with arith. NewInduction 1; Auto with arith. Right; Exists (minus n (S (S m))); Simpl. Rewrite (plus_sym m (minus n (S (S m)))). Rewrite (plus_n_Sm (minus n (S (S m))) m). Rewrite (plus_n_Sm (minus n (S (S m))) (S m)). Rewrite (plus_sym (minus n (S (S m))) (S (S m))); Auto with arith. Qed. Require Export Wf_nat. Require Export Min.