(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Prop. Inductive between [k:nat] : nat -> Prop := bet_emp : (between k k) | bet_S : (l:nat)(between k l)->(P l)->(between k (S l)). Hint constr_between : arith v62 := Constructors between. Lemma bet_eq : (k,l:nat)(l=k)->(between k l). Proof. NewInduction 1; Auto with arith. Qed. Hints Resolve bet_eq : arith v62. Lemma between_le : (k,l:nat)(between k l)->(le k l). Proof. NewInduction 1; Auto with arith. Qed. Hints Immediate between_le : arith v62. Lemma between_Sk_l : (k,l:nat)(between k l)->(le (S k) l)->(between (S k) l). Proof. NewInduction 1. Intros; Absurd (le (S k) k); Auto with arith. NewDestruct H; Auto with arith. Qed. Hints Resolve between_Sk_l : arith v62. Lemma between_restr : (k,l,m:nat)(le k l)->(le l m)->(between k m)->(between l m). Proof. NewInduction 1; Auto with arith. Qed. Inductive exists [k:nat] : nat -> Prop := exists_S : (l:nat)(exists k l)->(exists k (S l)) | exists_le: (l:nat)(le k l)->(Q l)->(exists k (S l)). Hint constr_exists : arith v62 := Constructors exists. Lemma exists_le_S : (k,l:nat)(exists k l)->(le (S k) l). Proof. NewInduction 1; Auto with arith. Qed. Lemma exists_lt : (k,l:nat)(exists k l)->(lt k l). Proof exists_le_S. Hints Immediate exists_le_S exists_lt : arith v62. Lemma exists_S_le : (k,l:nat)(exists k (S l))->(le k l). Proof. Intros; Apply le_S_n; Auto with arith. Qed. Hints Immediate exists_S_le : arith v62. Definition in_int := [p,q,r:nat](le p r)/\(lt r q). Lemma in_int_intro : (p,q,r:nat)(le p r)->(lt r q)->(in_int p q r). Proof. Red; Auto with arith. Qed. Hints Resolve in_int_intro : arith v62. Lemma in_int_lt : (p,q,r:nat)(in_int p q r)->(lt p q). Proof. NewInduction 1; Intros. Apply le_lt_trans with r; Auto with arith. Qed. Lemma in_int_p_Sq : (p,q,r:nat)(in_int p (S q) r)->((in_int p q r) \/ r=q). Proof. NewInduction 1; Intros. Elim (le_lt_or_eq r q); Auto with arith. Qed. Lemma in_int_S : (p,q,r:nat)(in_int p q r)->(in_int p (S q) r). Proof. NewInduction 1;Auto with arith. Qed. Hints Resolve in_int_S : arith v62. Lemma in_int_Sp_q : (p,q,r:nat)(in_int (S p) q r)->(in_int p q r). Proof. NewInduction 1; Auto with arith. Qed. Hints Immediate in_int_Sp_q : arith v62. Lemma between_in_int : (k,l:nat)(between k l)->(r:nat)(in_int k l r)->(P r). Proof. NewInduction 1; Intros. Absurd (lt k k); Auto with arith. Apply in_int_lt with r; Auto with arith. Elim (in_int_p_Sq k l r); Intros; Auto with arith. Rewrite H2; Trivial with arith. Qed. Lemma in_int_between : (k,l:nat)(le k l)->((r:nat)(in_int k l r)->(P r))->(between k l). Proof. NewInduction 1; Auto with arith. Qed. Lemma exists_in_int : (k,l:nat)(exists k l)->(EX m:nat | (in_int k l m) & (Q m)). Proof. NewInduction 1. Case IHexists; Intros p inp Qp; Exists p; Auto with arith. Exists l; Auto with arith. Qed. Lemma in_int_exists : (k,l,r:nat)(in_int k l r)->(Q r)->(exists k l). Proof. NewDestruct 1; Intros. Elim H0; Auto with arith. Qed. Lemma between_or_exists : (k,l:nat)(le k l)->((n:nat)(in_int k l n)->((P n)\/(Q n))) ->((between k l)\/(exists k l)). Proof. NewInduction 1; Intros; Auto with arith. Elim IHle; Intro; Auto with arith. Elim (H0 m); Auto with arith. Qed. Lemma between_not_exists : (k,l:nat)(between k l)-> ((n:nat)(in_int k l n) -> (P n) -> ~(Q n)) -> ~(exists k l). Proof. NewInduction 1; Red; Intros. Absurd (lt k k); Auto with arith. Absurd (Q l); Auto with arith. Elim (exists_in_int k (S l)); Auto with arith; Intros l' inl' Ql'. Replace l with l'; Auto with arith. Elim inl'; Intros. Elim (le_lt_or_eq l' l); Auto with arith; Intros. Absurd (exists k l); Auto with arith. Apply in_int_exists with l'; Auto with arith. Qed. Inductive P_nth [init:nat] : nat->nat->Prop := nth_O : (P_nth init init O) | nth_S : (k,l:nat)(n:nat)(P_nth init k n)->(between (S k) l) ->(Q l)->(P_nth init l (S n)). Lemma nth_le : (init,l,n:nat)(P_nth init l n)->(le init l). Proof. NewInduction 1; Intros; Auto with arith. Apply le_trans with (S k); Auto with arith. Qed. Definition eventually := [n:nat](EX k:nat | (le k n) & (Q k)). Lemma event_O : (eventually O)->(Q O). Proof. NewInduction 1; Intros. Replace O with x; Auto with arith. Qed. End Between. Hints Resolve nth_O bet_S bet_emp bet_eq between_Sk_l exists_S exists_le in_int_S in_int_intro : arith v62. Hints Immediate in_int_Sp_q exists_le_S exists_S_le : arith v62.