(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 0 < Zpower_pos x p. Proof. induction p; intros. (* xI *) rewrite xI_succ_xO, <-Pplus_diag, Pplus_one_succ_l. repeat rewrite Zpower_pos_is_exp. rewrite Zpower_pos_1_r. repeat apply Zmult_lt_0_compat; auto. (* xO *) rewrite <- Pplus_diag. repeat rewrite Zpower_pos_is_exp. repeat apply Zmult_lt_0_compat; auto. (* xH *) rewrite Zpower_pos_1_r; auto. Qed. Theorem Zpower_1_r: forall z, z^1 = z. Proof. exact Zpower_pos_1_r. Qed. Theorem Zpower_1_l: forall z, 0 <= z -> 1^z = 1. Proof. destruct z; simpl; auto. intros; apply Zpower_pos_1_l. intros; compute in H; elim H; auto. Qed. Theorem Zpower_0_l: forall z, z<>0 -> 0^z = 0. Proof. destruct z; simpl; auto with zarith. intros; apply Zpower_pos_0_l. Qed. Theorem Zpower_0_r: forall z, z^0 = 1. Proof. simpl; auto. Qed. Theorem Zpower_2: forall z, z^2 = z * z. Proof. intros; ring. Qed. Theorem Zpower_gt_0: forall x y, 0 < x -> 0 <= y -> 0 < x^y. Proof. destruct y; simpl; auto with zarith. intros; apply Zpower_pos_pos; auto. intros; compute in H0; elim H0; auto. Qed. Theorem Zpower_Zabs: forall a b, Zabs (a^b) = (Zabs a)^b. Proof. intros a b; case (Zle_or_lt 0 b). intros Hb; pattern b; apply natlike_ind; auto with zarith. intros x Hx Hx1; unfold Zsucc. (repeat rewrite Zpower_exp); auto with zarith. rewrite Zabs_Zmult; rewrite Hx1. f_equal; auto. replace (a ^ 1) with a; auto. simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto. simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto. case b; simpl; auto with zarith. intros p Hp; discriminate. Qed. Theorem Zpower_Zsucc: forall p n, 0 <= n -> p^(Zsucc n) = p * p^n. Proof. intros p n H. unfold Zsucc; rewrite Zpower_exp; auto with zarith. rewrite Zpower_1_r; apply Zmult_comm. Qed. Theorem Zpower_mult: forall p q r, 0 <= q -> 0 <= r -> p^(q*r) = (p^q)^r. Proof. intros p q r H1 H2; generalize H2; pattern r; apply natlike_ind; auto. intros H3; rewrite Zmult_0_r; repeat rewrite Zpower_exp_0; auto. intros r1 H3 H4 H5. unfold Zsucc; rewrite Zpower_exp; auto with zarith. rewrite <- H4; try rewrite Zpower_1_r; try rewrite <- Zpower_exp; try f_equal; auto with zarith. ring. apply Zle_ge; replace 0 with (0 * r1); try apply Zmult_le_compat_r; auto. Qed. Theorem Zpower_le_monotone: forall a b c, 0 < a -> 0 <= b <= c -> a^b <= a^c. Proof. intros a b c H (H1, H2). rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith. rewrite Zpower_exp; auto with zarith. apply Zmult_le_compat_l; auto with zarith. assert (0 < a ^ (c - b)); auto with zarith. apply Zpower_gt_0; auto with zarith. apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith. Qed. Theorem Zpower_lt_monotone: forall a b c, 1 < a -> 0 <= b < c -> a^b < a^c. Proof. intros a b c H (H1, H2). rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith. rewrite Zpower_exp; auto with zarith. apply Zmult_lt_compat_l; auto with zarith. apply Zpower_gt_0; auto with zarith. assert (0 < a ^ (c - b)); auto with zarith. apply Zpower_gt_0; auto with zarith. apply Zlt_le_trans with (a ^1); auto with zarith. rewrite Zpower_1_r; auto with zarith. apply Zpower_le_monotone; auto with zarith. Qed. Theorem Zpower_gt_1 : forall x y, 1 < x -> 0 < y -> 1 < x^y. Proof. intros x y H1 H2. replace 1 with (x ^ 0) by apply Zpower_0_r. apply Zpower_lt_monotone; auto with zarith. Qed. Theorem Zpower_ge_0: forall x y, 0 <= x -> 0 <= x^y. Proof. intros x y; case y; auto with zarith. simpl ; auto with zarith. intros p H1; assert (H: 0 <= Zpos p); auto with zarith. generalize H; pattern (Zpos p); apply natlike_ind; auto with zarith. intros p1 H2 H3 _; unfold Zsucc; rewrite Zpower_exp; simpl; auto with zarith. apply Zmult_le_0_compat; auto with zarith. generalize H1; case x; compute; intros; auto; try discriminate. Qed. Theorem Zpower_le_monotone2: forall a b c, 0 < a -> b <= c -> a^b <= a^c. Proof. intros a b c H H2. destruct (Z_le_gt_dec 0 b). apply Zpower_le_monotone; auto. replace (a^b) with 0. destruct (Z_le_gt_dec 0 c). destruct (Zle_lt_or_eq _ _ z0). apply Zlt_le_weak;apply Zpower_gt_0;trivial. rewrite <- H0;simpl;auto with zarith. replace (a^c) with 0. auto with zarith. destruct c;trivial;unfold Zgt in z0;discriminate z0. destruct b;trivial;unfold Zgt in z;discriminate z. Qed. Theorem Zmult_power: forall p q r, 0 <= r -> (p*q)^r = p^r * q^r. Proof. intros p q r H1; generalize H1; pattern r; apply natlike_ind; auto. clear r H1; intros r H1 H2 H3. unfold Zsucc; rewrite Zpower_exp; auto with zarith. rewrite H2; repeat rewrite Zpower_exp; auto with zarith; ring. Qed. Hint Resolve Zpower_ge_0 Zpower_gt_0: zarith. Theorem Zpower_le_monotone3: forall a b c, 0 <= c -> 0 <= a <= b -> a^c <= b^c. Proof. intros a b c H (H1, H2). generalize H; pattern c; apply natlike_ind; auto. intros x HH HH1 _; unfold Zsucc; repeat rewrite Zpower_exp; auto with zarith. repeat rewrite Zpower_1_r. apply Zle_trans with (a^x * b); auto with zarith. Qed. Lemma Zpower_le_monotone_inv: forall a b c, 1 < a -> 0 < b -> a^b <= a^c -> b <= c. Proof. intros a b c H H0 H1. destruct (Z_le_gt_dec b c);trivial. assert (2 <= a^b). apply Zle_trans with (2^b). pattern 2 at 1;replace 2 with (2^1);trivial. apply Zpower_le_monotone;auto with zarith. apply Zpower_le_monotone3;auto with zarith. assert (c > 0). destruct (Z_le_gt_dec 0 c);trivial. destruct (Zle_lt_or_eq _ _ z0);auto with zarith. rewrite <- H3 in H1;simpl in H1; exfalso;omega. destruct c;try discriminate z0. simpl in H1. exfalso;omega. assert (H4 := Zpower_lt_monotone a c b H). exfalso;omega. Qed. Theorem Zpower_nat_Zpower: forall p q, 0 <= q -> p^q = Zpower_nat p (Zabs_nat q). Proof. intros p1 q1; case q1; simpl. intros _; exact (refl_equal _). intros p2 _; apply Zpower_pos_nat. intros p2 H1; case H1; auto. Qed. Theorem Zpower2_lt_lin: forall n, 0 <= n -> n < 2^n. Proof. intros n; apply (natlike_ind (fun n => n < 2 ^n)); clear n. simpl; auto with zarith. intros n H1 H2; unfold Zsucc. case (Zle_lt_or_eq _ _ H1); clear H1; intros H1. apply Zle_lt_trans with (n + n); auto with zarith. rewrite Zpower_exp; auto with zarith. rewrite Zpower_1_r. assert (tmp: forall p, p * 2 = p + p); intros; try ring; rewrite tmp; auto with zarith. subst n; simpl; unfold Zpower_pos; simpl; auto with zarith. Qed. Theorem Zpower2_le_lin: forall n, 0 <= n -> n <= 2^n. Proof. intros; apply Zlt_le_weak; apply Zpower2_lt_lin; auto. Qed. Lemma Zpower2_Psize : forall n p, Zpos p < 2^(Z_of_nat n) <-> (Psize p <= n)%nat. Proof. induction n. destruct p; split; intros H; discriminate H || inversion H. destruct p; simpl Psize. rewrite inj_S, Zpower_Zsucc; auto with zarith. rewrite Zpos_xI; specialize IHn with p; omega. rewrite inj_S, Zpower_Zsucc; auto with zarith. rewrite Zpos_xO; specialize IHn with p; omega. split; auto with arith. intros _; apply Zpower_gt_1; auto with zarith. rewrite inj_S; generalize (Zle_0_nat n); omega. Qed. (** * Zpower and modulo *) Theorem Zpower_mod: forall p q n, 0 < n -> (p^q) mod n = ((p mod n)^q) mod n. Proof. intros p q n Hn; case (Zle_or_lt 0 q); intros H1. generalize H1; pattern q; apply natlike_ind; auto. intros q1 Hq1 Rec _; unfold Zsucc; repeat rewrite Zpower_exp; repeat rewrite Zpower_1_r; auto with zarith. rewrite (fun x => (Zmult_mod x p)); try rewrite Rec; auto with zarith. rewrite (fun x y => (Zmult_mod (x ^y))); try f_equal; auto with zarith. f_equal; auto; apply sym_equal; apply Zmod_mod; auto with zarith. generalize H1; case q; simpl; auto. intros; discriminate. Qed. (** A direct way to compute Zpower modulo **) Fixpoint Zpow_mod_pos (a: Z)(m: positive)(n : Z) : Z := match m with | xH => a mod n | xO m' => let z := Zpow_mod_pos a m' n in match z with | 0 => 0 | _ => (z * z) mod n end | xI m' => let z := Zpow_mod_pos a m' n in match z with | 0 => 0 | _ => (z * z * a) mod n end end. Definition Zpow_mod a m n := match m with | 0 => 1 | Zpos p => Zpow_mod_pos a p n | Zneg p => 0 end. Theorem Zpow_mod_pos_correct: forall a m n, 0 < n -> Zpow_mod_pos a m n = (Zpower_pos a m) mod n. Proof. intros a m; elim m; simpl; auto. intros p Rec n H1; rewrite xI_succ_xO, Pplus_one_succ_r, <-Pplus_diag; auto. repeat rewrite Zpower_pos_is_exp; auto. repeat rewrite Rec; auto. rewrite Zpower_pos_1_r. repeat rewrite (fun x => (Zmult_mod x a)); auto with zarith. rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith. case (Zpower_pos a p mod n); auto. intros p Rec n H1; rewrite <- Pplus_diag; auto. repeat rewrite Zpower_pos_is_exp; auto. repeat rewrite Rec; auto. rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith. case (Zpower_pos a p mod n); auto. unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto with zarith. Qed. Theorem Zpow_mod_correct: forall a m n, 1 < n -> 0 <= m -> Zpow_mod a m n = (a ^ m) mod n. Proof. intros a m n; case m; simpl. intros; apply sym_equal; apply Zmod_small; auto with zarith. intros; apply Zpow_mod_pos_correct; auto with zarith. intros p H H1; case H1; auto. Qed. (* Complements about power and number theory. *) Lemma Zpower_divide: forall p q, 0 < q -> (p | p ^ q). Proof. intros p q H; exists (p ^(q - 1)). pattern p at 3; rewrite <- (Zpower_1_r p); rewrite <- Zpower_exp; try f_equal; auto with zarith. Qed. Theorem rel_prime_Zpower_r: forall i p q, 0 < i -> rel_prime p q -> rel_prime p (q^i). Proof. intros i p q Hi Hpq; generalize Hi; pattern i; apply natlike_ind; auto with zarith; clear i Hi. intros H; contradict H; auto with zarith. intros i Hi Rec _; rewrite Zpower_Zsucc; auto. apply rel_prime_mult; auto. case Zle_lt_or_eq with (1 := Hi); intros Hi1; subst; auto. rewrite Zpower_0_r; apply rel_prime_sym; apply rel_prime_1. Qed. Theorem rel_prime_Zpower: forall i j p q, 0 <= i -> 0 <= j -> rel_prime p q -> rel_prime (p^i) (q^j). Proof. intros i j p q Hi; generalize Hi j p q; pattern i; apply natlike_ind; auto with zarith; clear i Hi j p q. intros _ j p q H H1; rewrite Zpower_0_r; apply rel_prime_1. intros n Hn Rec _ j p q Hj Hpq. rewrite Zpower_Zsucc; auto. case Zle_lt_or_eq with (1 := Hj); intros Hj1; subst. apply rel_prime_sym; apply rel_prime_mult; auto. apply rel_prime_sym; apply rel_prime_Zpower_r; auto with arith. apply rel_prime_sym; apply Rec; auto. rewrite Zpower_0_r; apply rel_prime_sym; apply rel_prime_1. Qed. Theorem prime_power_prime: forall p q n, 0 <= n -> prime p -> prime q -> (p | q^n) -> p = q. Proof. intros p q n Hn Hp Hq; pattern n; apply natlike_ind; auto; clear n Hn. rewrite Zpower_0_r; intros. assert (2<=p) by (apply prime_ge_2; auto). assert (p<=1) by (apply Zdivide_le; auto with zarith). omega. intros n1 H H1. unfold Zsucc; rewrite Zpower_exp; try rewrite Zpower_1_r; auto with zarith. assert (2<=p) by (apply prime_ge_2; auto). assert (2<=q) by (apply prime_ge_2; auto). intros H3; case prime_mult with (2 := H3); auto. intros; apply prime_div_prime; auto. Qed. Theorem Zdivide_power_2: forall x p n, 0 <= n -> 0 <= x -> prime p -> (x | p^n) -> exists m, x = p^m. Proof. intros x p n Hn Hx; revert p n Hn; generalize Hx. pattern x; apply Z_lt_induction; auto. clear x Hx; intros x IH Hx p n Hn Hp H. case Zle_lt_or_eq with (1 := Hx); auto; clear Hx; intros Hx; subst. case (Zle_lt_or_eq 1 x); auto with zarith; clear Hx; intros Hx; subst. (* x > 1 *) case (prime_dec x); intros H2. exists 1; rewrite Zpower_1_r; apply prime_power_prime with n; auto. case not_prime_divide with (2 := H2); auto. intros p1 ((H3, H4), (q1, Hq1)); subst. case (IH p1) with p n; auto with zarith. apply Zdivide_trans with (2 := H); exists q1; auto with zarith. intros r1 Hr1. case (IH q1) with p n; auto with zarith. case (Zle_lt_or_eq 0 q1). apply Zmult_le_0_reg_r with p1; auto with zarith. split; auto with zarith. pattern q1 at 1; replace q1 with (q1 * 1); auto with zarith. apply Zmult_lt_compat_l; auto with zarith. intros H5; subst; contradict Hx; auto with zarith. apply Zmult_le_0_reg_r with p1; auto with zarith. apply Zdivide_trans with (2 := H); exists p1; auto with zarith. intros r2 Hr2; exists (r2 + r1); subst. apply sym_equal; apply Zpower_exp. generalize Hx; case r2; simpl; auto with zarith. intros; red; simpl; intros; discriminate. generalize H3; case r1; simpl; auto with zarith. intros; red; simpl; intros; discriminate. (* x = 1 *) exists 0; rewrite Zpower_0_r; auto. (* x = 0 *) exists n; destruct H; rewrite Zmult_0_r in H; auto. Qed. (** * Zsquare: a direct definition of [z^2] *) Fixpoint Psquare (p: positive): positive := match p with | xH => xH | xO p => xO (xO (Psquare p)) | xI p => xI (xO (Pplus (Psquare p) p)) end. Definition Zsquare p := match p with | Z0 => Z0 | Zpos p => Zpos (Psquare p) | Zneg p => Zpos (Psquare p) end. Theorem Psquare_correct: forall p, Psquare p = (p * p)%positive. Proof. induction p; simpl; auto; f_equal; rewrite IHp. apply trans_equal with (xO p + xO (p*p))%positive; auto. rewrite (Pplus_comm (xO p)); auto. rewrite Pmult_xI_permute_r; rewrite Pplus_assoc. f_equal; auto. symmetry; apply Pplus_diag. symmetry; apply Pmult_xO_permute_r. Qed. Theorem Zsquare_correct: forall p, Zsquare p = p * p. Proof. intro p; case p; simpl; auto; intros p1; rewrite Psquare_correct; auto. Qed.