(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A) (x:A) {struct n} : A := match n with | O => x | S n' => f (iter_nat n' A f x) end. Fixpoint iter_pos (n:positive) (A:Set) (f:A -> A) (x:A) {struct n} : A := match n with | xH => f x | xO n' => iter_pos n' A f (iter_pos n' A f x) | xI n' => f (iter_pos n' A f (iter_pos n' A f x)) end. Definition iter (n:Z) (A:Set) (f:A -> A) (x:A) := match n with | Z0 => x | Zpos p => iter_pos p A f x | Zneg p => x end. Theorem iter_nat_plus : forall (n m:nat) (A:Set) (f:A -> A) (x:A), iter_nat (n + m) A f x = iter_nat n A f (iter_nat m A f x). Proof. simple induction n; [ simpl in |- *; auto with arith | intros; simpl in |- *; apply f_equal with (f := f); apply H ]. Qed. Theorem iter_nat_of_P : forall (p:positive) (A:Set) (f:A -> A) (x:A), iter_pos p A f x = iter_nat (nat_of_P p) A f x. Proof. intro n; induction n as [p H| p H| ]; [ intros; simpl in |- *; rewrite (H A f x); rewrite (H A f (iter_nat (nat_of_P p) A f x)); rewrite (ZL6 p); symmetry in |- *; apply f_equal with (f := f); apply iter_nat_plus | intros; unfold nat_of_P in |- *; simpl in |- *; rewrite (H A f x); rewrite (H A f (iter_nat (nat_of_P p) A f x)); rewrite (ZL6 p); symmetry in |- *; apply iter_nat_plus | simpl in |- *; auto with arith ]. Qed. Theorem iter_pos_plus : forall (p q:positive) (A:Set) (f:A -> A) (x:A), iter_pos (p + q) A f x = iter_pos p A f (iter_pos q A f x). Proof. intros n m; intros. rewrite (iter_nat_of_P m A f x). rewrite (iter_nat_of_P n A f (iter_nat (nat_of_P m) A f x)). rewrite (iter_nat_of_P (n + m) A f x). rewrite (nat_of_P_plus_morphism n m). apply iter_nat_plus. Qed. (** Preservation of invariants : if [f : A->A] preserves the invariant [Inv], then the iterates of [f] also preserve it. *) Theorem iter_nat_invariant : forall (n:nat) (A:Set) (f:A -> A) (Inv:A -> Prop), (forall x:A, Inv x -> Inv (f x)) -> forall x:A, Inv x -> Inv (iter_nat n A f x). Proof. simple induction n; intros; [ trivial with arith | simpl in |- *; apply H0 with (x := iter_nat n0 A f x); apply H; trivial with arith ]. Qed. Theorem iter_pos_invariant : forall (p:positive) (A:Set) (f:A -> A) (Inv:A -> Prop), (forall x:A, Inv x -> Inv (f x)) -> forall x:A, Inv x -> Inv (iter_pos p A f x). Proof. intros; rewrite iter_nat_of_P; apply iter_nat_invariant; trivial with arith. Qed.